Abstract. The objective of this study was to estimate the potential sediment yield distribution in Japan attributed to extreme-rainfall-induced slope failures in the future. For this purpose, a regression relationship between the slope failure probability and the subsequent sediment yield was developed by using sediment yield observations from 59 dams throughout Japan. The slope failure probability accounts for the effects of topography (as relief energy), geology and hydroclimate variations (hydraulic gradient changes due to extreme rainfall variations) and determines the potential slope failure occurrence with a 1-km resolution. The applicability of the developed relationship was then validated by comparing the simulated and observed sediment yields in another 43 dams. To incorporate the effects of a changing climate, extreme rainfall variations were estimated by using two climate change scenarios (the MRI-RCM20 Ver.2 model A2 scenario and the MIROC A1B scenario) for the future and by accounting for the slope failure probability through the effect of extreme rainfall on the hydraulic gradient. Finally, the developed slope failure hazard-sediment yield relationship was employed to estimate the potential sediment yield distribution under a changing climate in Japan.Time series analyses of annual sediment yields covering 15-20 years in 59 dams reveal that extreme sedimentation events have a high probability of occurring on average every 5-7 years. Therefore, the extreme-rainfall-induced slope failure probability with a five-year return period has a statistically robust relationship with specific sediment yield observations (with r 2 = 0.65). The verification demonstrated that the model is effective for use in simulating specific sediment yields with r 2 = 0.74. The results of the GCM scenarios suggest that the sediment yield issue will be critical Correspondence to: L. N. Gunawardhana (luminda@kaigan.civil.tohoku.ac.jp) in Japan in the future. When the spatially averaged sediment yield for all of Japan is considered, both scenarios produced an approximately 17-18% increase around the first half of the 21st century as compared to the present climate. For the second half of the century, the MIROC and MRI-RCM20 scenarios predict increased sediment yields of 22% and 14%, respectively, as compared to present climate estimations. On a regional scale, both scenarios identified several common areas prone to increased sediment yields in the future. Substantially higher specific sediment yield changes (over 1000 m 3 /km 2 /year) were estimated for the Hokuriku, Kinki and Shikoku regions. Out of 105 river basins in Japan, 96 will have an increasing trend of sediment yield under a changing climate, according to the predictions. Among them, five river basins will experience an increase of more than 90% of the present sediment yield in the future. This study is therefore expected to guide decision-makers in identifying the basins that are prone to sedimentation hazard under a changing climate in order to prepare and implem...
This study focuses on the influence of dam reservoir to cause excessive sediment disaster due to anomalous weather conditions by global warming. First, a sediment hazard probability model was developed and interpreted with observed sediment deposition records. Sediment yield was estimated for various return period and 5 year return period was found to be the best matched with the observed records. More over, it was observed that sediment production varies with particular land use in the region. Result of this study conform that the sediment hazard probability model is a much better tool to predict macroscale sediment storage in dam reservoirs.
The objective of this study was to estimate the potential sediment yield distribution in Japan attributed to extreme-rainfall-induced slope failures in the future. For this purpose, a regression relationship between the slope failure hazard probability and the subsequent sediment yield was developed by using sediment yield observations from 59 dams throughout Japan. The slope failure hazard probability accounts for the effects of topography (as relief energy), geology and hydro-climate variations (hydraulic gradient changes due to extreme rainfall variations) and determines the potential slope failure occurrence with a 1-km resolution. The applicability of the developed relationship was then validated by comparing the simulated and observed sediment yields in another 43 dams. To incorporate the effects of a changing climate, extreme rainfall variations were estimated by using two climate change scenarios (the MRI-RCM20 Ver.2 model A2 scenario and the MIROC A1B scenario) for the future and by accounting for the slope failure hazard probability through the effect of extreme rainfall on the hydraulic gradient. Finally, the developed slope failure hazard-sediment yield relationship was employed to estimate the potential sediment yield distribution under a changing climate in Japan. <br><br> Time series analyses of annual sediment yields covering 15–20 years in 59 dams reveal that extreme sedimentation events have a high probability of occurring on average every 5–7 years. Therefore, the extreme-rainfall-induced slope failure probability with a five-year return period has a statistically robust relationship with specific sediment yield observations (with <i>r</i><sup>2</sup> = 0.65). The verification demonstrated that the model is effective for use in simulating specific sediment yields with <i>r</i><sup>2</sup> = 0.74. The results of the GCM scenarios suggest that the sediment yield issue will be critical in Japan in the future. When the spatially averaged sediment yield for all of Japan is considered, both scenarios produced an approximately 17–18% increase around the first half of the 21st century as compared to the present climate. For the second half of the century, the MIROC and MRI-RCM20 scenarios predict increased sediment yields of 22% and 14%, respectively, as compared to present climate estimations. On a regional scale, both scenarios identified several common areas prone to increased sediment yields in the future. Substantially higher specific sediment yield changes (over 1000 m<sup>3</sup>/km<sup>2</sup>/year) were estimated for the Hokuriku, Kinki and Shikoku regions. Out of 105 river basins in Japan, 96 will have an increasing trend of sediment yield under a changing climate, according to the predictions. Among them, five river basins will experience an increase of more than 90% of the present sediment yield in the future. This study is therefore expected to guide decision-make...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.