We introduce the notion of I -lifting modules as a proper generalization of the notion of lifting modules and present some properties of this class of modules. It is shown that if M is an I -lifting direct projective module, then S/r is regular and r = JacS, where S is the ring of all R -endomorphisms of M and r = {φ 2 S | Im φ ⌧ M }. Moreover, we prove that if M is a projective I -lifting module, then M is a direct sum of cyclic modules. The connections between I -lifting modules and dual Rickart modules are presented.
A NOTE ON NONCOSINGULAR LIFTING MODULES ПРО НЕКОСИНГУЛЯРНI МОДУЛI IЗ ВЛАСТИВIСТЮ ПIДНЯТТЯ Let R be a right perfect ring. Let M be a noncosingular lifting module which does not have any relatively projective component. Then M has finite hollow dimension. Нехай R-праве досконале кiльце, а M-некосингулярний модуль iз властивiстю пiдняття, що не має жодної вiдносно проективної компоненти. Тодi M має скiнченну дуальну розмiрнiсть Голдi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.