A lightweight (60 g), personal nanoparticle respiratory deposition (NRD) sampler was developed to selectively collect particles smaller than 300 nm similar to their typical deposition in the respiratory tract. The sampler operates at 2.5 Lpm and consists of a respirable cyclone fitted with an impactor and a diffusion stage containing mesh screens. The cut-point diameter of the impactor was determined to be 300 nm with a sharpness σ = 1.53. The diffusion stage screens collect particles with an efficiency that matches the deposition efficiency of particles smaller than 300 nm in the respiratory tract. Impactor separation performance was unaffected by loading at typical workplace levels (p-value = 0.26). With chemical analysis of the diffusion media, the NRD sampler can be used to directly assess exposures to nanoparticles of a specific composition apart from other airborne particles. The pressure drop of the NRD sampler is sufficiently low to permit its operation with conventional, belt-mounted sampling pumps.
The objectives of this study were to characterize rural populations’ indoor and outdoor exposure to PM10, PM2.5, and endotoxin and identify factors that influence these concentrations. Samples were collected at 197 rural households over five continuous days between 2007 and 2011. Geometric mean indoor PM10 (21.2 μg m−3) and PM2.5 (12.2 μg m−3) concentrations tended to be larger than outdoor PM10 (19.6 μg m−3) and PM2.5 (8.2 μg m−3) concentrations (PM10 p= 0.086; PM2.5 p <0.001). Conversely, GM outdoor endotoxin concentrations (1.93 EU m−3) were significantly larger than indoor (0.32 EU m−3) (p<0.001). Compared to measurements from previous urban studies, indoor and outdoor concentrations of PM10 and PM2.5 in the study area tended to be smaller while, ambient endotoxin concentrations measured outside rural households were 3-10 times larger. Contrary to our initial hypothesis, seasonality did not have a significant effect on mean ambient PM10 concentrations; however, endotoxin concentrations in the autumn were almost seven-times larger than winter. Excluding home cleanliness, the majority of agricultural and housing characteristics evaluated were found to be poorly associated with indoor and outdoor particulate and endotoxin concentrations.
We developed a simulation model to study the effect of ventilation airflow rate with and without filtered recirculation on airborne contaminant concentrations (dust, NH3, CO, and CO2) for swine farrowing facilities. Energy and mass balance equations were used to simulate the indoor air quality and operational cost for a variety of ventilation conditions over a 3-month winter period, using time-varied outdoor temperature. The sensitivity of input and output parameters on indoor air quality and operational cost were evaluated. Significant factors affecting model output included mean winter temperature, generation rate of contaminants, pit-air-exchange ratio, and recirculation ratio. As mean outdoor temperature was decreased from −2.5 °C to −12.5 °C, total operational costs were increased from $872 to $1304. Dust generation rate affected dust concentrations linearly. When dust generation rates changed −50% and +100% from baseline, indoor dust concentrations were changed −50% and +100%, respectively. The selection of a pit-air-exchange ratio was found critical to NH3 concentration, but has little impact on other contaminants or cost. As the pit-air-exchange ratio was increased from 0.1 to 0.3, the NH3 concentration was increased by a factor of 1.5. The recirculation ratio affected both IAQ factors and total operational cost. As the recirculation ratio decreased to 0, inhalable and respirable dust concentrations, humidity, NH3 and CO2 concentrations decreased and total operational cost ($2216) was 104% more than with pit-fan-only ventilation ($1088). When the recirculation ratio was 1, the total operational cost was increased by $573 (53%) compared to pit-fan-only. Simulation provides a useful tool for examining the costs and benefits to installing common ventilation technology to CAFO and, ultimately, making sound management decisions.
An estimated 200,000 to 500,000 U.S. workers in concentrated animal feeding operations (CAFOs) are at risk of adverse respiratory outcomes from exposures to indoor contaminants. In the wintertime, general ventilation is minimized in the Midwest due to high heating costs required to maintain indoor temperatures optimal for animal production. Pit fans typically operate to exhaust under-floor manure pits, but little other fresh air intake exists. Many operators believe that these systems are sufficient to reduce contaminant concentrations within the building during winter. Investigating whether these pit fans provide sufficient protection against classic CAFO contaminants during minimal wintertime ventilation was warranted. Direct-reading instruments were used to measure and record concentrations of multiple contaminants using both fixed-area and mobile contaminant mapping in a farrowing room during a Midwest winter. With the exception of CO, concentrations were significantly (p < 0.001) higher with the pit fan off compared with those with the pit fan on. Additional analyses identified that significant changes (p < 0.001) in mean room concentrations of respirable dust (decreased, 77% with pit fan off and 87% with pit fan on) and CO2 (increased, 24%) over the 5-hr study periods and that multiple fixed-area monitors rather than the much-used, single center-of-room monitor provided a more conservative (e.g., protective) assessment of room concentrations. While concentrations did not exceed occupational exposure limits from OSHA or ACGIH for individual contaminants, recommended agricultural health limits from exposure-response studies suggested in the literature were exceeded for respirable dust, CO2, and NH3, indicating a need to consider personal exposures and control options to reduce contaminant concentrations in farrowing rooms. Pit fans reduced NH3 and H2S concentrations, but these fans may not be sufficient to control dust and eliminate the need for secondary exposure prevention methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.