Application of intelligent data analytics using machine learning in management of 5G networks can enable autonomous networking capabilities in 5G networks. This paper describes the design and implementation of CygNet MaSoN, a management system supporting advanced aggregation and analytics features combined with machine learning. The system supports detection of anomalous network behaviour, detection of degradation in network performance and service quality and also supports resource optimization. The main objective is to achieve self-organizing and closed loop automation functionalities expected as part of autonomous functioning of 5G networks. Details of the system architecture and components are presented. Three real-life use cases implemented on this system are then described. The features considered, machine learning models built and synthetic data generation methods adopted are presented. The results obtained using the MaSoN system are also presented to demonstrate the effectiveness of the system in 5G network operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.