This study investigated the cellular and subcellular compartmentation of Ni in the Eurasian serpentine species Alyssum murale, Alyssum bracteatum and Cleome heratensis and a non-serpentine population of A. murale (as a control) grown in hydroponic culture. Plant growth responses and Ni uptake clearly revealed the higher Ni tolerance of serpentine plants than the non-serpentine plants. Serpentine A. murale and A. bracteatum grew better at elevated (0.01 mM) Ni in the nutrient solution, supporting the view that the Ni hyperaccumulators have a higher requirement for Ni than normal plants. Low shoot Ni content of C. heratensis in response to the high Ni treatments indicated that this species employs an avoidance strategy for Ni tolerance. Energy-dispersive X-ray microanalysis showed that Ni was highly concentrated in the cell walls and cell lumen, most likely the vacuoles, of leaf epidermis of A. murale and A. bracteatum rather than in the mesophyll cells. EDX spectra from leaves of the non-serpentine A. murale suggested that Ni accumulated in both epidermal and mesophyll cells but not in the epidermal cell walls. Growth reduction and Ni toxicity in plants of the non-serpentine A. murale could be due to accumulation of Ni in the lumen of leaf mesophyll cells. Our data suggest that cellular and subcellular compartmentation are both possible mechanisms for Ni tolerance employed by the serpentine A. murale and A. bracteatum.
A soil Ca/Mg quotient greater than unity is generally considered necessary for normal plant growth but some serpentine plants are adapted to much lower Ca/Mg quotients, resulting from a major cation imbalance in their substrata. In order to investigate the growth and tolerance responses of serpentine and non-serpentine species to varied Ca/Mg quotients, controlled nutrient solution experiments were performed using an a newly reported Iranian endemic serpentine plant, Cleome heratensis Bunge et Bien. Ex Boiss. and a related non-serpentine species Cleome foliolosa DC. and a Eurasian Ni-hyperaccumulating species Alyssum murale Waldst. and Kit. Seedlings were grown in modified Hoagland's solutions with varying Ca and Mg concentrations (0.2-2.5 and 0.5-10 mM, respectively) in a fully factorial randomised block design. The yields of the two serpentine plants increased significantly as Mg concentrations in the nutrient solution were increased from 0.5 to 4 mM but decreased in the 10 mM Mg treatment. For C. foliolosa yields decreased significantly from 0.5 to 10 mM Mg, indicating the sensitivity of this non-serpentine plant, and the relative tolerance of the serpentine plants to extremely high levels of Mg. Shoot and root Mg and Ca concentrations in C. heratensis and A. murale were higher than those in C. foliolosa in the low and moderate Mg treatments, supporting the view that many serpentine plants have a relatively high requirement for Mg. Maximum Mg concentrations were found in the roots of C. heratensis. Yields of C. heratensis and A. murale did not change significantly as Ca levels in nutrient solution increased from 0.2 to 2.5 mM Ca, However the yield of C. foliolosa increased significantly from 0.2 to 1.5 mM Ca, indicating sensitivity in this non-serpentine plant and tolerance of the two serpentine plants to low levels of Ca correlated with tissue Ca concentrations, probably because of a greater ability for Ca uptake at low-Ca availability. Calcium deficiency in the low-Ca treatments could be a reason for reduced yield in the non-serpentine plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.