Tiny tubes with fiber architecture were developed by a novel method of fabrication upon introducing some modification to the microbraiding technique, to function as nerve guide conduit and the feasibility of in vivo nerve regeneration was investigated through several of these conduits. Poly(L-lactide-co-glycolide) (10:90) polymer fibers being biocompatible and biodegradable were used for the fabrication of the conduits. The microbraided nerve guide conduits (MNGCs) were characterized using scanning electron microscopy to study the surface morphology and fiber arrangement. Degradation tests were performed and the micrographs of the conduit showed that the degradation of the conduit is by fiber breakage indicating bulk hydrolysis of the polymer. Biological performances of the conduits were examined in the rat sciatic nerve model with a 12-mm gap. After implantation of the MNGC to the right sciatic nerve of the rat, there was no inflammatory response. One week after implantation, a thin tissue capsule was formed on the outer surface of the conduit, indicating good biological response of the conduit. Fibrin matrix cable formation was seen inside the MNGC after 1 week implantation. One month after implantation, 9 of 10 rats showed successful nerve regeneration. None of the implanted tubes showed tube breakage. The MNGCs were flexible, permeable, and showed no swelling apart from its other advantages. Thus, these new poly(L-lactide-co-glycolide) microbraided conduits can be effective aids for nerve regeneration and repair and may lead to clinical applications.
Nanotechnology is an area receiving increasing attention as progress is made towards
tailoring the morphology of polymeric biomaterial for a variety of applications. In the
present study an attempt was made to electrospin poly(L-lactide-co-glycolide)
biodegradable polymer nanofibres. In this process, polymer fibres with diameters down to
the nanometre range are formed by subjecting a fluid jet to a high electric field.
The nanofibres were collected on to a rotating Teflon mandrel and fabricated to
tubes or conduits, to function as nerve guidance channels. The feasibility of in
vivo nerve regeneration was investigated through several of these conduits. The
biological performance of the conduits were examined in the rat sciatic nerve model
with a 10 mm gap length. After implantation of the nanofibre nerve guidance
conduit to the right sciatic nerve of the rat, there was no inflammatory response.
One month after implantation five out of eleven rats showed successful nerve
regeneration. None of the implanted tubes showed tube breakage. The nanofibre
nerve guidance conduits were flexible, permeable and showed no swelling. Thus,
these new poly(L-lactide-co-glycolide) nanofibre conduits can be effective aids for
nerve regeneration and repair. Improvements could be done by impregnating
nerve growth factors or Schwann cells and may lead to clinical applications.
The effect of the addition of a radio-opaque filler, barium sulfate (BaSO(4)), on the mechanical properties of a biodegradable amorphous polymer film (poly-lactic-co-glycolic acid, PLGA) was studied, as a function of degradation. With up to about 18% loading (v/v), the modulus of the filled polymer increases; beyond this concentration, agglomerates are formed. The filled systems are also radio-opaque, over a thickness range of 0.07-0.19 mm in stent form (helicoidal). These stents were then immersed in phosphate buffer pH 7.4 at 37(o)C for 2 weeks. The radial strength of stent was measured by using a compression test. It was found that filler-loaded stent (FS) increased in radial strength by about 4 times (14.95 +/- 1.20 N/mm) compared to the unfilled stent (UFS). However, both samples lost radial strength as the polymer degraded in buffer, but FS retained 60% (9.05 +/- 0.07 N/mm) of its strength after 2 weeks whereas only 36% (1.39 +/- 1.04 N/mm) was retained for UFS. Moreover, UFS lost its helical shape after 3 weeks. The findings have implications for optimization of degradable stent formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.