The drift time and ion mobility of imidazole are determined and a procedure for the mathematical processing of spectra is developed. The specific features of changes in the ion mobility spectrum during measurements at a particular time are studied. The structures of the generated ions are proposed based on the interpretation of spectral signals, and the enthalpies of formation of the generated ions are estimated. The characteristic signal of the imidazole ion protonated at the nitrogen atom of the pyridine type was revealed. The limit of detection for imidazole in recording with the Kerber detector was found to be 0.3 ng.
Objectives. To determine the ion mobility of N-methylimidazole, establish the structure of ions corresponding to characteristic signals, and determine the detection limit of N-methylimidazole on the ion-drift detector Kerber.Methods. Ion mobility spectrometry was used to study the ionization processes. The enthalpies of the reactions of monomer and dimer ions were calculated in the ORCA 4.1.1 software by the B3LYP density functional method with a set of basic functions 6-31G (d, p).Results. The drift time and ion mobility values of N-methylimidazole were determined. A method for mathematical processing of spectra and a program for its implementation was developed. The changing peculiarities of the ion mobility spectrum during measurement at a given time were studied. According to the interpretation of the spectrum signals, the structure of the generated ions was proposed, and the enthalpies of ion formation were determined.Conclusions. The characteristic signal of the N-methylimidazole ion protonated at the nitrogen atom of the pyridine type was revealed. It was found that two signals in the ion mobility spectra of N-methylimidazole correspond to the presence of the monomer and dimer ions. The detection limit of N-methylimidazole on the ion-drift detector Kerber was determined, amounting to 3 pg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.