Kinematic hardening represents the anisotropic component of strain hardening by a shift of the center of the yield surface in stress space. The current approach in stress analysis at finite deformation includes rotational effects by using the Jaumann derivatives of the shift and stress tensors. This procedure generates the unexpected result that oscillatory shear stress is predicted for monotonically increasing simple shear strain. A theory is proposed that calls for a modified Jaumann derivative based on the spin of specific material directions associated with the kinematic hardening. This eliminates the spurious oscillation. General anisotropic hardening is shown to require a similar approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.