Experimentation in shaken microplate formats offers a potential platform technology for the rapid evaluation and optimization of cell culture conditions. Provided that cell growth and antibody production kinetics are comparable to those found in currently used shake flask systems then the microwell approach offers the possibility to obtain early process design data more cost effectively and with reduced material requirements. This work describes a detailed engineering characterization of liquid mixing and gas-liquid mass transfer in microwell systems and their impact on suspension cell cultures. For growth of murine hybridoma cells producing IgG1, 24-well plates have been characterized in terms of energy dissipation (P/V) (via Computational Fluid Dynamics, CFD), fluid flow, mixing and oxygen transfer rate as a function of shaking frequency and liquid fill volume. Predicted k(L)a values varied between 1.3 and 29 h(-1); liquid-phase mixing time, quantified using iodine decolorization experiments, varied from 1.7 s to 3.5 h; while the predicted P/V ranged from 5 to 35 W m(-3). CFD simulations of the shear rate predicted hydrodynamic forces will not be detrimental to cells. For hybridoma cultures however, high shaking speeds (>250 rpm) were shown to have a negative impact on cell growth, while a combination of low shaking speed and high well fill volume (120 rpm, 2,000 microL) resulted in oxygen limited conditions. Based on these findings a first engineering comparison of cell culture kinetics in microwell and shake flask formats was made at matched average energy dissipation rates. Cell growth kinetics and antibody titer were found to be similar in 24-well microtiter plates and 250 mL shake flasks. Overall this work has demonstrated that cell culture performed in shaken microwell plates can provide data that is both reproducible and comparable to currently used shake flask systems while offering at least a 30-fold decrease in scale of operation and material requirements. Linked with automation this provides a route towards the high throughput evaluation of robust cell lines under realistic suspension culture conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.