Experimental results for the temperature dependence of the density of propyl -cyanobiphenyl (3CB), butylcyanobiphenyl (4CB) and hexyl -cyanobiphenyl (6CB) are presented. The results are compared with previous results for temperature dependence of other members of the alkyl cyanobiphenyl series (nCB). The deviation of the density from linear temperature dependence is discussed in terms of the recently discovered corresponding rule for nematic liquid crystals.
Composites were prepared from an aerosil and 4-n-alkyl-4'cyanobiphenyls with five to eight carbon atoms in the alkyl chain. Their high silica density of y7 g aerosil in 1 cm 3 of liquid crystal (LC) allows the observation of the behaviour of a thin cyanobiphenyl layer (having nearly a monolayer structure) on the silica particles. The systems are investigated by dielectric spectroscopy (10 22 -10 9 Hz) in a large temperature range (220-370 K). All the composites show a (main) relaxation process at frequencies much lower than the processes observed for the bulk LC that was assigned to the dynamics of the molecules in the surface layer. The temperature dependence of its characteristic frequencies obeys the Vogel-FulcherTammann law, which is found to be typical for glass-forming liquids. The quasi twodimensional character of the glass transition in the surface layer is discussed for the first time. At the nematic-to-isotropic transition temperature of the bulk, the composites show a continuous decrease of the characteristic frequencies as a function of the alkyl chain length, while the bulk LCs show the well known odd-even behaviour. The magnitude and temperature dependence of the slow relaxation process in the composites (molecules on an outer surface) agree with those of the same molecules confined to the nanopores of molecular sieves (internal surface).
Articles you may be interested inNucleation and growth of ZnO on PMMA by low-temperature atomic layer deposition J. Vac. Sci. Technol. A 33, 01A128 (2015); 10.1116/1.4902326Effect of nitrogen doping on wetting and photoactive properties of laser processed zinc oxide-graphene oxide nanocomposite layers Cotton/polyester woven fabrics were functionalized with ZnO thin films or nanoparticles by pulsed laser deposition, using a KrF* excimer laser source. Depending on the number of applied laser pulses, well-separated nanoparticles (for 10 pulses) or compact thin films (for 100 pulses) were deposited. The synthesized nanostructures were evaluated morphologically by scanning electron microscopy and atomic force microscopy, physico-chemically by x-ray diffraction and functionally by the contact angle method. By modifying the ambient gas nature and pressure in the deposition chamber, hydrophilic or hydrophobic surfaces were obtained. When using an oxygen flux, both the deposited thin films and nanoparticles were hydrophilic. After deposition in vacuum, the nanoparticles were hydrophobic, but the thin films were super-hydrophobic. This radical modification of wetting behavior was assigned to the differences in microstructure features and surface electrical charging in the two cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.