The immunology of the hair follicle, its relationship with the 'skin immune system' and its role in hair diseases remain biologically intriguing and clinically important. In this study, we analysed the immunoreactivity patterns of 15 immunodermatological markers to determine the cellular composition and immune privilege of the human hair follicle immune system in anagen VI (growth phase). The most prominent cells located in or around the hair follicle were Langerhans cells, CD4+ or CD8+ T cells, macrophages and mast cells, whereas B cells, natural killer cells and gammadelta T cells were found very rarely. Langerhans cells (CD1a+, major histocompatibility complex, MHC class II+), and T cells (CD4+ or CD8+) were predominantly distributed in the distal hair follicle epithelium, whereas macrophages (CD68+, MHC class II+) and mast cells (Giemsa+) were located in the perifollicular connective tissue sheath. Transmission electron microscopy confirmed low numbers of immune cells in the proximal hair follicle epithelium, and very few macrophages and Langerhans cells were seen in the dermal papilla. Melanophages were observed in the connective tissue sheath and dermal papilla. MHC class I (HLA-A, -B, -C) and beta2-microglobulin immunoreactivity was found on most skin cells, but was substantially reduced on isthmus keratinocytes and virtually absent in the proximal hair follicle epithelium. Apart from the absence of Fas ligand immunoreactivity, the sharply reduced numbers of T cells and Langerhans cells, and the virtual absence of MHC class I expression all suggest that the anagen proximal hair follicle constitutes an area of immune privilege within the hair follicle immune system, whose collapse may be crucial for the pathogenesis of alopecia areata.
This paper delineates briefly why the immunology of the hair follicle matters (e.g., anti-infection defense, hair growth control by immunomodulatory agents, sequestration of follicular autoantigens), and which open key questions await clarification. We then focus on the murine hair follicle immune system (HIS) and its immune privilege. We show how the murine HIS is gradually constructed during hair follicle morphogenesis, and how it is transformed during hair follicle cycling. Key characteristics of the HIS are summarized, such as the absence of MHC class I expression in the anagen hair bulb and the very restricted distribution of antigen-presenting cells and intraepithelial T cells to the distal outer root sheath, which also expresses nonclassical MHC class Ib molecules. The interconnections between the HIS and the skin immune system (SIS) and potential hair growth-modulatory roles of mast cells and macrophages are addressed, and very recent findings on the human HIS are summarized. The paper closes by sketching immunobiologic, clinical, and pharmacologic perspectives in trichoimmunology that deserve the attention of immunologists, dermatologists, and hair biologists alike.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.