This study aims to investigate the rheological properties of self-assembling gels containing cyclodextrins with potential application as injectable matrix for the sustained delivery of poorly soluble drugs. The ability of these gels to entrap two hydrophobic molecules, benzophenone (BZ) and tamoxifen (TM), and to allow their in vitro sustained release was evaluated. In view of their future pharmaceutical use, gels were sterilized by high hydrostatic pressures (HHP) and tested for their biocompatibility. The gels formed instantaneously at room temperature, by mixing the aqueous solutions of two polymers: a beta-cyclodextrin polymer (pbetaCD) and a hydrophobically modified dextran by grafting alkyl side chains (MD). MD-pbetaCD gels presented a viscoelastic behavior under low shear, characterized by constant values of the loss modulus G'' and the storage modulus G'. The most stable gels were obtained for a total polymer concentration C(p) of 6.6% and 7.5% (w/w), and a polymer ratio MD/pbetaCD of 50/50 and 33/67 (w/w). BZ and TM were successfully incorporated into MD-pbetaCD gels with loading efficiencies as high as 90%. In vitro, TM and BZ were released gradually from the gel matrix with less than 25% and 75% release, respectively, after 6 days incubation. HHP treatment did not modify the rheological characteristics of MD-pbetaCD gels. Moreover, the low toxicity of these gels after intramuscular administration in rabbits makes them promising injectable devices for local delivery of drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.