7Swedish Radiation Protection Authority, SE-171-16 Stockholm, SwedenThe paper presents the main conclusions and recommendations derived from the EVIDOS project, which is supported by the European Commission within the 5th Framework Programme. EVIDOS aims at evaluating state of the art neutron dosimetry techniques in representative workplaces of the nuclear industry with complex mixed neutron-photon radiation fields. This analysis complements a series of individual papers which present detailed results and it summarises the main findings from a practical point of view. Conclusions and recommendations are given concerning characterisation of radiation fields, methods to derive radiation protection quantities and dosemeter results.
In this paper, we will present a first (but not complete) status description of active personal dosemeters (APDs) and their implementation in European countries. In modern radiation protection practices, APDs are becoming absolutely necessary operational tools for satisfying the ALARA principle. Despite their success, they are relatively new for individual monitoring of workers. Regulation, legal requirements and calibration procedures are different in European member states. A catalogue of commercially available and prototype devices is presented. Improvement on devices and in implementation of calibration method are expected in the forthcoming years. End-user feedback experience and requirements are reported.
In 2001, the European Radiation Dosimetry Group, EURADOS, started a working group on 'Harmonisation of Individual Monitoring in Europe and the Dissemination of Information on New Techniques in this Field'. Within this group, one of the projects consisted of analysing the status of active personal dosemeters (APDs) in Europe. This paper reviews the regulatory requirements for APDs in 15 EU member states and summarises the main characteristics of commercial and new developments in this field. In particular, it focuses on the comparison of APD performance and standard passive dosimetry systems. Based on this information, an evaluation is initiated to establish why several countries are reluctant to accept APDs for dose records.
6Swedish Radiation Protection Authority, Sweden 7 Radiation Protection Division, Health Protection Agency, Chilton, Didcot OX11 0RQ, UK Within the EC project EVIDOS, double-differential (energy and direction) fluence spectra were determined by means of novel direction spectrometers. By folding the spectra with fluence-to-dose equivalent conversion coefficients, contributions to H Ã (10) for 14 directions, and values of the personal dose equivalent H p (10) and the effective dose E for 6 directions of a person's orientation in the field were determined. The results of the measurements and calculations obtained within the EVIDOS project in workplace fields in nuclear installations in Europe, i.e., at Krümmel (boiling water reactor and transport cask), at Mol (Venus research reactor and fuel facility Belgonucléaire) and at Ringhals (pressurised reactor and transport cask) are presented.
Supported by the European Commission, the EVIDOS project started in November 2001 with the broad goal of evaluating state of the art dosimetry techniques in representative workplaces of the nuclear industry. Seven European institutes joined efforts with end users at nuclear power plants, at fuel processing and reprocessing plants, and at transport and storage facilities. A comprehensive programme was devised to evaluate capabilities and limitations of standard and innovative personal dosemeters in relation to the mixed neutron-photon fields of concern to the nuclear industry. This paper describes the criteria behind the selection of dosimetry techniques and workplaces that were analysed, as well as the organisation of the measurement campaigns. Particular emphasis was placed on the evaluation of a variety of electronic personal dosemeters, either commercially available or previously developed by the partners. The estimates provided by these personal dosemeters were compared to reference values of dose equivalent quantities derived from spectrometry and fluence-to-dose equivalent conversion coefficients. Spectrometry was performed both with conventional multisphere and with some original instrumentation providing energy and direction resolution, based on silicon detectors and superheated drop detectors mounted on or in spherical moderators. The results were collected in a large, searchable database and are intended to be used in the harmonisation of dosimetric procedures for mixed radiation fields and for the approval of dosimetry services in Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.