The synthesis and biochemical evaluation of novel 1,2,4-oxadiazole-based muscarinic agonists which can readily penetrate into the CNS is reported. Efficacy and binding of these compounds are markedly influenced by the structure and physicochemical properties of the cationic head group. In a series of azabicyclic ligands efficacy and affinity are influenced by the size of the surface area presented to the receptor, at the active site, and the degree of conformational flexibility. The exo-1-azanorbornane 16a represents the optimum arrangement, and this compound is one of the most efficacious and potent muscarinic agonists known. In a series of isoquinuclidine based muscarinic agonists efficacy and affinity are influenced by the geometry between the cationic head.group and hydrogen bond acceptor pharmacophore and steric bulk in the vicinity of the base. The anti configuration represented by 22a is optimal for muscarinic activity. Ligands with pKa below 6.5 show poor binding to the muscarinic receptor as exemplified by the diazabicyclic derivative 42.
The synthesis and cortical muscarinic activity of a novel series of pyrazine-based agonists is described. Quinuclidine and azanorbornane derivatives were prepared either by reaction of lithiated pyrazines with azabicyclic ketones, followed by chlorination and reduction, or by reaction of the lithium enolate of the azabicyclic ester with 2-chloropyrazines followed by ester hydrolysis and decarboxylation. Substitution at all three positions of the heteroaromatic ring has been explored. Optimal muscarinic agonist activity was observed for unsubstituted pyrazines in the azanorbornane series. The exo-1-azanorbornane 18a is one of the most efficacious and potent centrally active muscarinic agonists known. Studies on the 3-substituted derivatives have provided evidence of the preferred conformation of these ligands for optimal muscarinic activity. Substitution at C6 gave ligands with increased affinity and reduced efficacy. Moving the position of the diazine ring nitrogens to give pyrimidine and pyridazine derivatives resulted in a significant loss of muscarinic activity.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.