The degradation of trace gases and pollutants in the troposphere is dominated by their reaction with hydroxyl radicals (OH). The importance of OH rests on its high reactivity, its ubiquitous photochemical production in the sunlit atmosphere, and most importantly on its regeneration in the oxidation chain of the trace gases. In the current understanding, the recycling of OH proceeds through HO2 reacting with NO, thereby forming ozone. A recent field campaign in the Pearl River Delta, China, quantified tropospheric OH and HO2 concentrations and turnover rates by direct measurements. We report that concentrations of OH were three to five times greater than expected, and we propose the existence of a pathway for the regeneration of OH independent of NO, which amplifies the degradation of pollutants without producing ozone.
Abstract. The yields of organic nitrates and of secondary organic aerosol (SOA) particle formation were measured for the reaction NO 3 +β-pinene under dry and humid conditions in the atmosphere simulation chamber SAPHIR at Research Center Jülich. These experiments were conducted at low concentrations of NO 3 (NO 3 +N 2 O 5 <10 ppb) and β-pinene (peak∼15 ppb), with no seed aerosol. SOA formation was observed to be prompt and substantial (∼50% mass yield under both dry conditions and at 60% RH), and highly correlated with organic nitrate formation. The observed gas/aerosol partitioning of organic nitrates can be simulated using an absorptive partitioning model to derive an estimated vapor pressure of the condensing nitrate species of p vap ∼5×10 −6 Torr (6.67×10 −4 Pa), which constrains speculation about the oxidation mechanism and chemical identity of the organic nitrate. Once formed the SOA in this system continues to evolve, resulting in measurable aerosol volume decrease with time. The observations of high aerosol yield from NO x -dependent oxidation of monoterpenes provide an example of a significant anthropogenic source of SOA from biogenic hydrocarbon precursors. Estimates of the NO 3 +β-pinene SOA source strength for California and the globe indicate that NO 3 reactions with monoterpenes are likely an important source (0.5-8% of the global total) of organic aerosol on regional and global scales.
Abstract. Total atmospheric OH reactivities (k OH ) have been measured as reciprocal OH lifetimes by a newly developed instrument at a rural site in the densely populated Pearl River Delta (PRD) in Southern China in summer 2006. The deployed technique, LP-LIF, uses laser flash photolysis (LP) for artificial OH generation and laser-induced fluorescence (LIF) to measure the time-dependent OH decay in samples of ambient air. The reactivities observed at PRD covered a range from 10 s −1 to 120 s −1 , indicating a large load of chemical reactants. On average, k OH exhibited a pronounced diurnal profile with a mean maximum value of 50 s −1 at daybreak and a mean minimum value of 20 s −1 at noon. The comparison of reactivities calculated from measured trace gases with measured k OH reveals a missing reactivity of about a factor of 2 at day and night. The reactivity explained by measured trace gases was dominated by anthropogenic pollutants (e.g., CO, NO x , light alkenes and aromatic hydrocarbons) at night, while it was strongly influenced by local, biogenic emissions of isoprene during the day. Box model calculations initialized by measured parameters reproduce the observed OH reactivity well and suggest that the missing reactivity is contributed by unmeasured, secondary chemistry products (mainly aldehydes and ketones) that were photochemically formed by hydrocarbon oxidation. Overall, k OH was dominated by organic compounds, which had a maximum contribution of 85% in the afternoon. The paper demonstrates the usefulness of direct reactivity measurements, emphasizes the Correspondence to: A. Hofzumahaus (a.hofzumahaus@fz-juelich.de) need for direct measurements of oxygenated organic compounds in atmospheric chemistry studies, and discusses uncertainties of the modelling of OVOC reactivities.
The Multiple Chamber Aerosol Chemical Aging Study (MUCHA-CHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models.atmospheric chemistry | biosphere-atmosphere interactions O rganic aerosol (OA) comprises a large fraction of fine-particle mass (PM 2.5 ) (1). In the developed world, 1-2% of deaths are blamed on inhalation of PM 2.5 (2), and the leading uncertainty in climate forcing is the interplay between the number of fine particles large enough to nucleate cloud droplets and the amount of sunlight reflected by those clouds (3). Oxidation and condensation of organics play a major but uncertain role in both phenomena.Traditional models treat most OA as nonvolatile primary OA (POA), augmented by secondary OA (SOA) (4), and they underpredict OA concentrations by a factor of 3-10 (5). α-Pinene is a major biogenic SOA source, sometimes used to represent all SOA in global models (4, 6). However, less than 20% of the carbon from fresh α-pinene oxidation condenses in chambers at room temperature; (7) the remainder is gaseous (Fig. 1A). This "chamber" SOA is modestly oxidized, with an oxygen to carbon ratio ðO∶CÞ < 0.4 (7). It is unambiguously semivolatile: Yields rise with increasing SOA mass loading (8, 9) and decreasing temperature (10), and the SOA evaporates upon heating (11-13) and after isothermal dilution (14).In contrast, ambient OA is highly oxidized (0.5 ≤ O∶C ≤ 1.0) (1, 15) and not very volatile (16). Ambient SOA is much less volatile than ambient POA (16). Consequently, "chamber" SOA does not represent the atmosphere. Our hypothesis is that homogeneous gas-phase aging by OH is a major missing process connecting chamber studies to the atmosphere. Considerable attention has been paid to heterogeneous uptake of oxidants to particles (17, 18), and recently gas-phase oxidation of semivolatile primary emissions (19), but the degree to which gas-phase oxidation can age chamber SOA is uncertain (1,4,18,20).OA resides in the atmosphere for about one week (21), while the gas-phase lifetimes of major semivolatile SOA constituents are far shorter. Typical α-pinene products pinonaldehyde, cispinonic acid, and pinic acid all have lifetimes of only a few hours for summertime conditions (22). Without question, oxidation of semivolatile SOA vapors will perturb the equilibrium phase partitioning of these constituents. Because almost all of the first-generation products are less volatile than α...
Halogen atoms from the reactions of sea-salt particles may play a significant role in the marine boundary layer. Reactions of sodium chloride, the major component of sea-salt particles, with nitrogen oxides generate chlorine atom precursors. However, recent studies suggest there is an additional source of chlorine in the marine troposphere. This study shows that molecular chlorine is generated from the photolysis of ozone in the presence of sea-salt particles above their deliquescence point; this process may also occur in the ocean surface layer. Given the global distribution of ozone, this process may provide a global source of chlorine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.