Measuring a quantum system can randomly perturb its state. The strength and nature of this back-action depend on the quantity that is measured. In a partial measurement performed by an ideal apparatus, quantum physics predicts that the system remains in a pure state whose evolution can be tracked perfectly from the measurement record. We demonstrated this property using a superconducting qubit dispersively coupled to a cavity traversed by a microwave signal. The back-action on the qubit state of a single measurement of both signal quadratures was observed and shown to produce a stochastic operation whose action is determined by the measurement result. This accurate monitoring of a qubit state is an essential prerequisite for measurement-based feedback control of quantum systems.
We study the energy relaxation times ($T_1$) of superconducting transmon qubits in 3D cavities as a function of dielectric participation ratios of material surfaces. This surface participation ratio, representing the fraction of electric field energy stored in a dissipative surface layer, is computed by a two-step finite-element simulation and experimentally varied by qubit geometry. With a clean electromagnetic environment and suppressed non-equilibrium quasiparticle density, we find an approximately proportional relation between the transmon relaxation rates and surface participation ratios. These results suggest dielectric dissipation arising from material interfaces is the major limiting factor for the $T_1$ of transmons in 3D cQED architecture. Our analysis also supports the notion of spatial discreteness of surface dielectric dissipation.Comment: Main text: 5 pages 4 figures; Supplementary Materials: 6 pages 4 figures 1 tabl
Superconducting circuits have attracted growing interest in recent years as a promising candidate for fault-tolerant quantum information processing. Extensive efforts have always been taken to completely shield these circuits from external magnetic fields to protect the integrity of the superconductivity. Here we show vortices can improve the performance of superconducting qubits by reducing the lifetimes of detrimental single-electron-like excitations known as quasiparticles. Using a contactless injection technique with unprecedented dynamic range, we quantitatively distinguish between recombination and trapping mechanisms in controlling the dynamics of residual quasiparticle, and show quantized changes in quasiparticle trapping rate because of individual vortices. These results highlight the prominent role of quasiparticle trapping in future development of superconducting qubits, and provide a powerful characterization tool along the way.
Three-dimensional microwave cavities have recently been combined with superconducting qubits in the circuit quantum electrodynamics (cQED) architecture. These cavities should have less sensitivity to dielectric and conductor losses at surfaces and interfaces, which currently limit the performance of planar resonators. We expect that significantly (>103 ) higher quality factors and longer lifetimes should be achievable for 3D structures. Motivated by this principle, we have reached internal quality factors greater than 0.5×10 9 and intrinsic lifetimes of 0.01 seconds for multiple aluminum superconducting cavity resonators at single photon energies and millikelvin temperatures. These improvements could enable long lived quantum memories with submicrosecond access times when strongly coupled to superconducting qubits.In circuit quantum electrodynamics (cQED), microwave resonators protect superconducting qubits from decoherence, suppress spontaneous emission 1 , allow for quantum non-demolition measurements 2,3 , and serve as quantum memories 4 . Single photon lifetimes between 10-50 µs (Q≈10 6 ) have been achieved in thin film resonators with careful surface preparation and geometrical optimization 5-7 . The route toward an optimal geometry also sheds light on the physical mechanisms responsible for damping. Planar resonators with larger features are generally found to be higher quality, which is interpreted as loss dominated by surface elements 5-9 , as the relative energy stored in surface defects is inversely proportional to the size of the resonator.Three dimensional, macroscopic cavity resonators are at the extreme limit of this trend and historically exhibit remarkable lifetimes 10 . Progress with superconducting niobium cavities for particle acceleration has led to dwell times of seconds for RF field strengths of 10 MeV/m at 2 K bath temperatures 11 . At the much lower drive powers corresponding to single-photon excitations, or fields of ∼1 µV/m, storage time in excess of 100 ms has been achieved in three dimensional, niobium Fabry Perot resonators at 51 GHz and 0.8 K 12 , and also in 3D, niobium micromaser cavities at 22 GHz and 0.15 K 13 . The coupling of superconducting qubits to 3D microwave cavities 14 could lead to cQED-type experiments with coherence on these timescales.We have set out to construct very high quality microwave cavities (Q≫10 6 ) in superconducting aluminum while focusing on geometries that may be compatible a) Electronic mail: robert.schoelkopf@yale.edu with single-photon cQED experiments at ∼10 GHz and 20 mK. We study two types of waveguide cavities (rectangular and cylindrical) that support a diversity of modes to test the effects of material purity and surface treatment on cavity lifetimes in the quantum regime. We find that pure, chemically etched aluminum produces the best results, with rectangular resonators reaching lifetimes, τ int =Q int /ω of 1.2 ms (Q int =6.9×10 7 ) and cylindrical resonators as long as 10.4 ms (Q int =7.4×10 8 ). Realizing these timescales in cQED experime...
As the energy relaxation time of superconducting qubits steadily improves, non-equilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum non-demolition projective measurements within a time interval much shorter than T1, using a quantum limited amplifier (Josephson Parametric Converter). The quantum jumps statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in magnetic field.A mesoscopic superconducting circuit, of typical size smaller than 1 mm 3 , cooled to a temperature well below the superconducting gap should be completely free of thermal quasiparticle (QP) excitations. However, in the last decade there has been growing experimental evidence that the QP density at low temperatures saturates to values orders of magnitude above the value expected at thermal equilibrium [1][2][3][4][5]. These non-equilibrium QP excitations limit the performance of a variety of superconducting devices, such as single-electron turnstiles [6], kinetic inductance [7, 8] and quantum capacitance [9] detectors, micro-coolers [10, 11], as well as Andreev bound state nano-systems [12,13]. Moreover, QP's are an important intrinsic decoherence mechanism for superconducting two level systems (qubits) [14][15][16][17][18][19]. In particular, a recent experiment performed on the fluxonium qubit showed energy relaxation times in excess of 1 ms, limited by QP's [20]. Surprisingly, the sources generating these QP excitations are not yet positively identified. The measurement of non-equilibrium QP dynamics at low temperatures could provide insight into their origin as well as an efficient tool to quantify QP suppression solutions.In this letter, we show that the quantum jumps[21] of a qubit whose lifetime is limited by QP tunneling, such as the fluxonium artificial atom, can serve as a sensitive probe of QP dynamics. A jump in the state of the qubit indicates an interaction of the qubit with a QP, and therefore fluctuations in the rate of quantum jumps are directly linked to changes in QP number. Tracking the state of the qubit in real time requires fast, single-shot projective measurement with minimal added noise, made possible by the advent of quantum-limited amplifiers [22][23][24]. In this work, we use a Josephson Parametric Converter (JPC) quantum limited amplifier [23,25] to monitor the state of our qubit with a resolution of 5 µs, two orders of magnitude faster than the qubi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.