We present a survey of the phenomenological adjustment of the parameters of the Skyrme-Hartree-Fock (SHF) model for a self-consistent description of nuclear structure and low-energy excitations. A large sample of reliable input data from nuclear bulk properties (energy, radii, surface thickness) is selected guided by the criterion that ground-state correlations should remain small. Least-squares fitting techniques are used to determine the SHF parameters that accommodate best the given input data. The question of the predictive value of the adjustment is scrutinized by performing systematic variations with respect to chosen nuclear matter properties (incompressibility, effective mass, symmetry energy, and sum-rule enhancement factor). We find that the ground-state data, although representing a large sample, leave a broad range of choices, i.e., a broad range of nuclear matter properties. Information from giant resonances is added to pin down more precisely the open features. We then apply the set of newly adjusted parametrizations to several more detailed observables such as neutron skin, isotope shifts, and super-heavy elements. The techniques of least-squares fitting provide safe estimates for the uncertainties of such extrapolations. The systematic variation of forces allows to disentangle the various influences on a given observable and to estimate the predictive value of the SHF model. The results depend very much on the observable under consideration.
We present results obtained in the calculation of nuclear ground-state properties in relativistic Hartree approximation using a Lagrangian whose QCD-scaled coupling constants are all natural ͑dimensionless and of order one͒. Our model consists of four-, six-, and eight-fermion point couplings ͑contact interactions͒ together with derivative terms representing, respectively, two-, three-, and four-body forces and the finite ranges of the corresponding mesonic interactions. The coupling constants have been determined in a self-consistent procedure that solves the model equations for representative nuclei simultaneously in a generalized nonlinear least-squares adjustment algorithm. The extracted coupling constants allow us to predict ground-state properties of a much larger set of even-even nuclei to good accuracy. The fact that the extracted coupling constants are all natural leads to the conclusion that QCD scaling and chiral symmetry apply to finite nuclei.
The shell structure of superheavy nuclei is investigated within various parametrizations of relativistic and nonrelativistic nuclear mean-field models. The heaviest known even-even nucleus 156 264 Hs 108 is used as a benchmark to estimate the predictive value of the models. From that starting point, doubly magic spherical nuclei are searched in the region Zϭ110Ϫ140 and Nϭ134-298. They are found at (Zϭ114 , Nϭ184), (Zϭ120 , Nϭ172), or at (Zϭ126 , Nϭ184), depending on the parametrization. ͓S0556-2813͑97͒01305-8͔PACS number͑s͒: 21.60. Jz, 21.30.Fe, 24.10.Jv, 27.90.ϩb
The direct interaction of nuclei with superintense laser fields is studied. We show that present and upcoming high-frequency laser facilities, especially together with a moderate acceleration of the target nuclei to match photon and transition frequency, do allow for resonant laser-nucleus interaction. These direct interactions may be utilized for the model-independent optical measurement of nuclear properties such as the transition frequency and the dipole moment, thus opening the field of nuclear quantum optics. As an ultimate goal, one may hope that direct laser-nucleus interactions could become a versatile tool to enhance preparation, control, and detection in nuclear physics.
We study the possibility of producing a new kind of nuclear systems which in addition to ordinary nucleons contain a few antibaryons (B = p, Λ, etc.). The properties of such systems are described within the relativistic mean-field model by employing G-parity transformed interactions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei from 4 He to 208 Pb. It is demonstrated that the presence of a real antibaryon leads to a strong rearrangement of a target nucleus resulting in a significant increase of its binding energy and local compression. Noticeable effects remain even after the antibaryon coupling constants are reduced by factor 3 − 4 compared to G-parity motivated values. We have performed detailed calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic approach. It is shown that due to significant reduction of the reaction Q-values, the in-medium annihilation rates should be strongly suppressed leading to relatively long-lived antibaryonnucleus systems. Multi-nucleon annihilation channels are analyzed too. We have also estimated formation probabilities of bound B + A systems in pA reactions and have found that their observation will be feasible at the future GSI antiproton facility. Several observable signatures are proposed. The possibility of producing multi-quark-antiquark clusters is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.