Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was required to support virulence factor transcription. These data reveal the function of two conserved gene families, their essential role in the incorporation of host fatty acids by Gram-positive pathogens, and connects fatty acid kinase to the regulation of virulence factor transcription in S. aureus.T he pathway for the uptake and incorporation of host fatty acids (FA) by bacterial pathogens is important to understanding their physiology and determining if type II fatty acid synthesis (FASII) inhibitors will be useful antibacterial therapeutics. FASII is an energy-intensive process, and the advantage of being able to use host FA for membrane assembly obviously allows ATP to be diverted to the synthesis of other macromolecules. Gram-positive pathogens are capable of incorporating extracellular FA into their phospholipids. In species related to Streptococcus agalactiae, extracellular FA can completely replace endogenously synthesized FA, rendering the FASII inhibitors ineffective growth inhibitors if sufficient FA are present (1, 2). In contrast, FASII inhibitors exemplified by the enoyl-acyl carrier protein (ACP) reductase therapeutic AFN-1252 are effective against Staphylococcus aureus, even when extracellular FA are abundant (2, 3). A major impediment to our understanding of this diversity is that the pathway and enzymes responsible for the incorporation of extracellular FA is not established in the Firmicutes. A recent analysis of a ΔplsX knockout strain of S. aureus ruled out a role for either acyl-CoAs or acyl-ACP as intermediates in host FA metabolism and instead provided evidence for the existence of a new enzyme that phosphorylates FA, called FA kinase (Fak) (4) (Fig. 1A). Host FA are phosphorylated by Fak, and the acyl-PO 4 formed is either used by the PlsY glycerol-3-phosphate acyltransferase or converted to acyl-ACP by PlsX. The acyl-ACP may be either elongated by FASII or used by PlsC. Despite the strong evidence for their existence, the genes/proteins that encode this novel enzyme in FA metabolism were previously unidentif...
Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2) 2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. Fatty acid kinase (Fak)2 is a two-protein system that consists of a dimeric ATP-binding protein (FakA) and a monomeric fatty acid-binding protein (FakB) (1). Fak expression is widespread in Gram-positive bacteria with most strains possessing a single FakA along with multiple FakBs. Staphylococcus aureus expresses two FakBs that both function with FakA. FakB1 binds a saturated fatty acid, although FakB2 prefers an unsaturated fatty acid (1). The FakBs possess a bound fatty acid, but they function as exchange proteins that swap a bound fatty acid for a fatty acid in a detergent micelle or membrane bilayer (Fig. 1). This exchange reaction underlies the function of Fak in exogenous fatty acid incorporation into membrane phospholipids in S. aureus (2). Extracellular fatty acids are flipped to the inner aspect of the membrane where they exchange onto a FakB. The acyl chain bound to FakB is phosphorylated by FakA, and the phosphorylated FakB then exchanges the acyl-PO 4 for a fatty acid in the membrane to initiate another round of phosphorylation. The deposited acyl-PO 4 is used by PlsY (glycerol-3-phosphate acyltransferase) to initiate membrane phospholipid synthesis or is converted to acyl-acyl carrier protein by PlsX (Fig. 1). Acyl-acyl carrier protein is used by either PlsC in the second acyltransferase step of phospholipid synthesis or by FabF, the elongation condensing enzyme of bacterial type II fatty acid synthesis (1). In addition to the role of FakA and FakB in the activation of exogenous fatt...
Acetyl-CoA carboxylase is a biotin-dependent enzyme that catalyzes the regulated step in fatty acid synthesis. The bacterial form has three separate components: biotin carboxylase, biotin carboxyl carrier protein (BCCP), and carboxyltransferase. Catalysis by acetyl-CoA carboxylase proceeds via two half-reactions. In the first half-reaction, biotin carboxylase catalyzes the ATP-dependent carboxylation of biotin, which is covalently attached to BCCP, to form carboxybiotin. In the second half-reaction, carboxyltransferase transfers the carboxyl group from carboxybiotin to acetyl-CoA to form malonyl-CoA. All biotin-dependent carboxylases are proposed to have a two-site ping-pong mechanism in which the carboxylase and transferase activities are separate and do not interact. This posits two hypotheses: either biotin carboxylase and BCCP undergo the first half-reaction, BCCP dissociates, and then BCCP binds to carboxyltransferase, or all three constituents form an enzyme complex. To determine which hypothesis is correct, a steady-state enzyme kinetic analysis of Escherichia coli acetyl-CoA carboxylase was conducted. The results indicated the two active sites of acetyl-CoA carboxylase interact. Both in vitro and in vivo pull-down assays demonstrated that the three components of E. coli acetyl-CoA carboxylase form a multimeric complex and that complex formation is unaffected by acetyl-CoA, AMPPNP, and mRNA encoding carboxyltransferase. The implications of these findings for the regulation of acetyl-CoA carboxylase and fatty acid biosynthesis are discussed.
Summary PlsX is an acyl-acyl carrier protein (ACP):phosphate transacylase that interconverts the two acyl donors in Gram-positive bacterial phospholipid synthesis. The deletion of plsX in Staphylococcus aureus results in a requirement for both exogenous fatty acids and de novo type II fatty acid biosynthesis. Deletion of plsX (SP0037) in Streptococcus pneumoniae did not result in an auxotrophic phenotype. The ΔplsX S. pneumoniae strain was refractory to myristic acid-dependent growth arrest, and unlike the wild-type strain, was susceptible to fatty acid synthesis inhibitors in the presence of exogenous oleate. The ΔplsX strain contained longer-chain saturated fatty acids imparting a distinctly altered phospholipid molecular species profile. An elevated pool of 18- and 20-carbon saturated fatty acids was detected in the ΔplsX strain. A S. pneumoniae thioesterase (TesS, SP1408) hydrolyzed acyl-ACP in vitro, and the ΔtesS ΔplsX double knockout strain was a fatty acid auxotroph. Thus, the TesS thioesterase hydrolyzed the accumulating acyl-ACP in the ΔplsX strain to liberate fatty acids that were activated by fatty acid kinase to bypass a requirement for extracellular fatty acid. This work identifies tesS as the gene responsible for the difference in exogenous fatty acid growth requirement of the ΔplsX strains of S. aureus and S. pneumoniae.
SUMMARY Acetyl-coenzyme A (acetyl-CoA) carboxylase is a biotin-dependent, multifunctional enzyme that catalyzes the regulated step in fatty acid synthesis. The Escherichia coli enzyme is composed of a homodimeric biotin carboxylase (BC), biotinylated biotin carboxyl carrier protein (BCCP), and an α2β2 heterotetrameric carboxyltransferase. This enzyme complex catalyzes two half-reactions to form malonylcoenzyme A. BC and BCCP participate in the first half-reaction, whereas carboxyltransferase and BCCP are involved in the second. Three-dimensional structures have been reported for the individual subunits; however, the structural basis for how BCCP reacts with the carboxylase or transferase is unknown. Therefore, we report here the crystal structure of E. coli BCCP complexed with BC to a resolution of 2.49 Å. The protein-protein complex shows a unique quaternary structure and two distinct interfaces for each BCCP monomer. These BCCP binding sites are unique compared to phylogenetically related biotin-dependent carboxylases and therefore provide novel targets for developing antibiotics against bacterial acetyl-CoA carboxylase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.