Honeycomb structures of group IV elements can host massless Dirac fermions with non-trivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monolayer structures. We present a detailed investigation of the β12 boron sheet, which is a borophene structure that can form spontaneously on a Ag(111) surface. Our tight-binding analysis revealed that the lattice of the β12-sheet could be decomposed into two triangular sublattices in a way similar to that for a honeycomb lattice, thereby hosting Dirac cones. Furthermore, each Dirac cone could be split by introducing periodic perturbations representing overlayer-substrate interactions. These unusual electronic structures were confirmed by angle-resolved photoemission spectroscopy and validated by first-principles calculations. Our results suggest monolayer boron as a new platform for realizing novel high-speed low-dissipation devices.
2 If a fluid of bosons is cooled to sufficiently low temperature, a significant fraction will condense into the lowest quantum state, forming a Bose condensate. Bose condensation is a consequence of the even symmetry of the many-body wave function of bosons under particle interchange, and allows for the manifestation of macroscopic quantum phenomena, the most striking being superfluidity.Traditionally, Bose condensates are said to come in two types. Bose-Einstein condensates (BECs) occur in systems of stable bosons, such as dilute atomic gases or liquid Excitons are bosons that are bound states between an electron and hole in a solid, and were predicted long ago to Bose condense (2,3,4). Because of their light mass and high binding energy, exciton condensates should be stable at higher temperature than traditional BEC or BCS phases (5,6).Different theories predict that a Bose condensate of excitons could be a superfluid (5) or innately insulating (7), so there is tremendous need for experimental input. Identifying an exciton condensate in nature could have a profound impact on future understanding of macroscopic quantum phenomena, as well the classic problem of the metal-insulator transition in band solids, in which exciton condensation has long been believed to play a fundamental role (2,3,4).Condensed phases of photogenerated excitons have been realized in semiconductor quantum wells in resonance with a Fabry-Perot cavity which, although not fully thermally equilibrated, have exhibited evidence for transient superfluidity (8). Excitonic phases have also been realized in quantumHall bilayers in a perpendicular magnetic field (9). Although the order in these two-dimensional structures is not strictly long-ranged, and the order parameter cannot be measured directly, compelling evidence for excitonic correlations has been observed in Coulomb drag experiments (9). Despite these 3 achievements, there is a great need to identify an exciton condensate in a fully thermalized, threedimensional system in which the order is long-ranged.An ideal approach would be to identify a material in which an exciton condensate forms "naturally." Long ago, a BCS condensate of excitons was predicted to arise spontaneously in semimetals in which an indirect band gap is tuned close to zero ( Fig. 1) (2,3,4). This condensate is expected to break a spatial symmetry, rather than the U(1) symmetry broken by a superconductor, and in the absence of pinning should exhibit perfect conductivity without a Meissner effect (10). This phase can be thought of as a solid crystal of excitons, which early authors dubbed "excitonium" (4), and is the two-band analogue of the Wigner crystal instability of an interacting electron gas (10). This condensate is closely related to that in bilayer quantum wells (9), the coherence developing between electrons and holes in different bands ( Fig. 1) rather than in different layers. If found, this exciton condensate would be threedimensional, guaranteed to reside in thermodynamic equilibrium, and could potentially...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.