In particle-based plasma simulation, when dealing with source terms such as ionization, emission from boundaries, etc., the total number of particles can grow, at times, exponentially. Problems involving the spatial expansion of dynamic plasmas can result in statistical under representation of particle distributions in critical regions. Furthermore, when considering code optimization for massively parallel operation, it is useful to maintain a uniform number of particles per cell. Accordingly, we have developed an algorithm for coalescing or fissioning particles on 2D and 3D orthogonal grids that is based on a method of Assous et al. [F. Assous, T. Pougeard Dulimbert, J. Segre, J. Comput. Phys. 187 (2003) 550]. We present the algorithm and describe in detail its application to particle-in-cell simulations of gas ionization/streamer formation and dynamic, expanding plasmas.
In heavy-ion inertial confinement fusion (HIF), an ion beam is transported several meters through the reactor chamber to the target. This standoff distance mitigates damage to the accelerator from the target explosion. For the high perveance beams and millimeter-scale targets under consideration, the transport method is largely determined by the degree of ion charge and current neutralization in the chamber. This neutralization becomes increasingly difficult as the beam interacts with the ambient chamber environment and strips to higher charge states. Nearly complete neutralization permits neutralized-ballistic transport (main-line HIF transport method), where the ion beam enters the chamber at roughly 3-cm radius and focuses onto the target. In the backup pinched-transport schemes, the beam is first focused outside the chamber before propagating at small radius to the target. With nearly complete charge neutralization, the large beam divergence is contained by a strong magnetic field resulting from roughly 50-kA net current. In assisted-pinched transport, a preformed discharge channel provides the net current and the discharge plasma provides nearly complete charge and current neutralization of the beam. In self-pinched transport, the residual net current results solely from the beam-driven breakdown of the ambient gas. Using hybrid particle-in-cell simulation codes, the behavior of HIF driver-scale beams in these three transport modes is examined. Simulations of neutralized ballistic transport, at a few-mTorr flibe pressure, show excellent neutralization given a preformed or photoionized (from the heated target) plasma. Two- and three-dimensional simulations of assisted-pinch transport in roughly 1-Torr Xe show the importance of attaining >1-μs magnetic diffusion time to limit self-field effects and achieve good transport efficiency. For Xe gas pressures ranging from 10–150 mTorr, calculations predict a robust self-magnetic force sufficient for self-pinched transport. The latest simulation results are presented and the important remaining issues for each transport scheme are discussed.
This work is an attempt to elucidate effects that may limit efficiency in magnetrons operated at relativistic voltages (V -500 kV). Three-dimensional particle-in-cell simulation is used to investigate the behavior of 14 and 22 cavity, cylindrical, rising-sun magnetrons. Power is extracted radially through a single iris located at the end of every other cavity. Numerical results show that in general output power and efficiency increase approximately linearly with increasing iris width (decreasing vacuum Q) until the total Q becomes too low for stable oscillation in the n-mode to be maintained. Beyond this point mode competition and/or switching occur and efficiency decreases.Results reveal that the minimum value of Q (maximum efficiency) that can be achieved prior to the onset of mode competition is significantly affected by the magnitude of the O-space-harmonic of the n-mode, a unique characteristic of rising-suns, and by the magnitude of the electron current density (space-charge effects). By minimizing these effects, up to 3.7 GW output power has been produced at an efficiency of 40%.PACS 84.40.F I .
We describe a particle advance algorithm for particle-in-cell simulation of highly magnetized charged particles that relaxes the time step constraint due to cyclotron motion. The method preserves the correct cyclotron radius for large time steps and corrects for magnetic field gradients without requiring explicit calculation of the particle magnetic moment. Application of the algorithm is illustrated with electron and ion single particle orbit calculations in a field reversed configuration with rotating magnetic fields. This technique is efficient and applicable to massively parallel simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.