Two metabolism (4 x 4 Latin square design) experiments were conducted to evaluate the effects of corn condensed distillers solubles (CCDS) supplementation on intake, ruminal fermentation, site of digestion, and the in situ disappearance rate of forage in beef steers fed low-quality switchgrass hay (Panicum virgatum L.). Experimental periods for both trials consisted of a 9-d diet adaptation and 5 d of collection. In Exp. 1, 4 ruminally and duodenally cannulated steers (561 +/- 53 kg of initial BW) were fed low-quality switchgrass hay (5.1% CP, 40.3% ADF, 7.5% ash; DM basis) and supplemented with CCDS (15.4% CP, 4.2% fat; DM basis). Treatments included 1) no CCDS; 2) 5% CCDS; 3) 10% CCDS; and 4) 15% CCDS (DM basis), which was offered separately from the hay. In Exp. 2, 4 ruminally and duodenally cannulated steers (266.7 +/- 9.5 kg of initial BW) were assigned to treatments similar to Exp. 1, except forage (Panicum virgatum L.; 3.3% CP, 42.5% ADF, 5.9% ash; DM basis) and CCDS (21.6% CP, 17.4% fat; DM basis) were fed as a mixed ration, using a forage mixer to blend the CCDS with the hay. In Exp. 1, ruminal, postruminal, and total tract OM digestibilities were not affected (P = 0.21 to 0.59) by treatment. Crude protein intake and total tract CP digestibility increased linearly with increasing CCDS (P = 0.001 and 0.009, respectively). Microbial CP synthesis tended (P = 0.11) to increase linearly with increasing CCDS, whereas microbial efficiency was not different (P = 0.38). Supplementation of CCDS to low-quality hay-based diets tended to increase total DM and OM intakes (P = 0.11 and 0.13, respectively) without affecting hay DMI (P = 0.70). In Exp. 2, ruminal OM digestion increased linearly (P = 0.003) with increasing CCDS, whereas postruminal and total tract OM digestibilities were not affected (P > or = 0.37) by treatment. Crude protein intake, total tract CP digestibility, and microbial CP synthesis increased (P < or = 0.06) with increasing level of CCDS supplementation, whereas microbial efficiency did not change (P = 0.43). Ruminal digestion of ADF and NDF increased (P = 0.02 and 0.008, respectively) with CCDS supplementation. Based on this data, CCDS used in Exp. 2 was 86.7% rumen degradable protein. The results indicate that CCDS supplementation improves nutrient availability and use of low-quality forages.
Effects of increasing level of field pea (variety: Profi) on intake, digestion, microbial efficiency, and ruminal fermentation were evaluated in beef steers fed growing diets. Four ruminally and duodenally cannulated crossbred beef steers (367+/-48 kg initial BW) were used in a 4 x 4 Latin square. The control diet consisted of 50% corn, 23% corn silage, 23% alfalfa hay, and 4% supplement (DM basis). Treatments were field pea replacing corn at 0, 33, 67, or 100%. Diets were formulated to contain a minimum of 12% CP, 0.62% Ca, 0.3% P, and 0.8% K (DM basis). Each period was 14 d long. Steers were adapted to the diets for 9 d. On d 10 to 14, intakes were measured. Field pea was incubated in situ, beginning on d 10, for 0, 2, 4, 8, 12, 16, 24, 36, 48, 72, and 96 h. Bags were inserted in reverse order, and all bags were removed at 0 h. Ruminal fluid was collected and pH recorded at -2, 0, 2, 4, 6, 8, 10, and 12 h after feeding on d 13. Duodenal samples were taken for three consecutive days beginning on d 10 in a manner that allowed for a collection to take place every other hour over a 24-h period. Linear, quadratic, and cubic contrasts were used to compare treatments. There were no differences in DMI (12.46 kg/d, 3.16% BW; P > 0.46). Ruminal dry matter fill (P = 0.02) and mean ruminal pH (P = 0.009) decreased linearly with increasing field pea level. Ruminal ammonia-N (P < 0.001) and total VFA concentrations (P = 0.01) increased linearly with increasing field pea level. Total-tract disappearance of OM (P = 0.03), N (P = 0.01), NDF (P = 0.02), and ADF (P = 0.05) increased linearly with an increasing field pea level. There were no differences in total-tract disappearance of starch (P = 0.35). True ruminal N disappearance increased linearly (P < 0.001) with increasing field pea level. There were no differences in ruminal disappearance of OM (P = 0.79), starch (P = 0.77), NDF (P = 0.21), or ADF (P = 0.77). Treatment did not affect microbial efficiency (P = 0.27). Field pea is a highly digestible, nutrient-dense legume grain that ferments rapidly in the rumen. Because of their relatively high level of protein, including field peas in growing diets will decrease the need for protein supplementation. Based on these data, it seems that field pea is a suitable substitute for corn in growing diets.
Sixty-four yearling steers (345 ± 4.2 kg BW) were used to study the effects of degree of dry-rolled corn processing and corn dried distillers grains plus solubles (DDGS) inclusion on feeding and ruminating behavior, G:F, and carcass characteristics. Steers were assigned randomly to 1 of 4 experimental treatments (n = 16 per treatment): 1) coarse-rolled (2.68 mm) corn and 20% DDGS, 2) coarse-rolled corn and 40% DDGS, 3) fine-rolled (1.46 mm) corn and 20% DDGS, and 4) fine-rolled corn and 40% DDGS. Final BW and ADG were not affected by corn processing or DDGS. Dry matter intake (kg/d and % of BW) decreased (P < 0.001) and G:F increased (P < 0.001) with increasing inclusion of DDGS. Meal number increased (P ≤ 0.05) and meal size decreased (P < 0.001) with finer dry-roll corn processing and with increasing inclusion of DDGS. Drinking time decreased (P = 0.03) with finer dry-rolled corn processing and tended to increase (P = 0.06) with increased inclusion of DDGS. Rumination time while standing decreased (P = 0.03) with increased inclusion of DDGS. Increasing inclusion of DDGS from 20 to 40% decreased intake, increased G:F, and altered feeding behavior of finishing steers consuming a 90% concentrate diet without affecting carcass quality. Increasing the degree of dry-roll corn processing did not impact growth performance and did not interact with increasing inclusion of DDGS in finishing diets.
Two experiments were conducted to evaluate the use of pulse grains in receiving diets for cattle. In Exp. 1, 8 Holstein (615 +/- 97 kg of initial BW) and 8 Angus-crossbred steers (403 +/- 73 kg of initial BW) fitted with ruminal and duodenal cannulas were blocked by breed and used in a randomized complete block design to assess the effects of pulse grain inclusion in receiving diets on intake, ruminal fermentation, and site of digestion. Experiment 2 was a 39-d feedlot receiving trial in which 176 mixed-breed steers (254 +/- 19 kg of initial BW) were used in a randomized complete block design to determine the effects of pulse grains on DMI, ADG, and G:F in newly received feedlot cattle. In both studies, pulse grains (field peas, lentils, or chickpea) replaced corn and canola meal as the grain component in diets fed as a total mixed ration. Treatments included 1) corn and canola meal (control); 2) field pea; 3) lentil; and 4) chickpea. Preplanned orthogonal contrasts were conducted between control vs. chickpea, control vs. field pea, and control vs. lentil. In Exp. 1, there were no differences among treatments for DMI (11.63 kg/d, 2.32% of BW daily, P = 0.63) or OM intake (P = 0.63). No treatment effects for apparent ruminal (P = 0.10) and total tract OM digestibilities (P = 0.40) were detected when pulse grains replaced corn and canola meal. Crude protein intake (P = 0.78), microbial CP flow (P = 0.46), total tract CP digestibility (P = 0.45), and microbial efficiency (P = 0.18) were also not influenced by treatment. Total-tract ADF (P = 0.004) and NDF (P = 0.04) digestibilities were greater with field pea vs. control. Total VFA concentrations were lower for field pea (P = 0.009) and lentil (P < 0.001) compared with control. Chickpea, field pea, and lentil had lower (P < or = 0.03) acetate molar proportion than control. Ruminal pH (P = 0.18) and NH3 (P = 0.14) were not different among treatments. In Exp. 2, calves fed chickpea, field pea, and lentil had greater overall DMI (7.59 vs. 6.98 kg/d; P < or = 0.07) and final BW (332 vs. 323 kg; P < or = 0.04), whereas chickpea and lentil had greater ADG (1.90 vs. 1.71 kg/d; P < or = 0.04) than control. Gain efficiency (P = 0.18) did not differ among treatments. Steers fed pulse grains had similar CP and OM digestibilities compared with a combination of corn and canola meal in receiving diets. Pulse grains are a viable alternative for replacement of protein supplements in receiving diets for beef cattle.
To determine the effect of increasing supplementation of corn dried distillers grains plus solubles (DDGS) on growth performance and feeding behavior, 70 steer calves (287 ± 10 kg of BW) were blocked by BW to 3 pens equipped with Insentec feeders. For 84 d, calves were fed medium-quality grass/legume hay offered for ad libitum intake and provided 1 of 3 dietary supplemental treatments (n = 7 or 8 steers per treatment within each pen; n = 23 or 24 per treatment): 1) nothing, 2) DDGS at 0.5% of BW daily (DM basis), and 3) DDGS at 1% of BW daily (DM basis). Hay intake (kg/d and % of BW daily) decreased linearly (P < 0.001) as DDGS supplementation increased. Total DMI (kg/d and % of BW) increased linearly (P < 0.001) with DDGS supplementation. Average daily gain and gain efficiency (G:F) responded quadratically (P ≤ 0.006) as G:F increased to a lesser extent when DDGS supplementation increased from 0.5 to 1% than from 0 to 0.5%. Meals (number per day) and time eating per meal for hay and total diet decreased linearly (P ≤ 0.006) with increasing DDGS supplementation. Time eating per day for hay responded quadratically (P < 0.001) and decreased to a greater extent when increasing from 0 to 0.5% DDGS supplementation than from 0.5 to 1% DDGS. Feed intake per minute (eating rate) for hay and total diet increased linearly (P ≤ 0.05) with increasing DDGS supplementation. On d 84, LM area, back fat thickness, and rump fat thickness increased linearly (P ≤ 0.006) with increasing DDGS supplementation. There were significant day × treatment interactions (P < 0.001) for plasma glucose and urea-N concentrations. Glucose did not change over the feeding period in control steers but increased in both supplemented groups. Urea-N decreased for control steers over the feeding period whereas urea-N increased in supplemented steers. In conclusion, supplementation of DDGS in amounts of 0.5 or 1% of BW daily can be used to reduce hay intake and improve ADG and G:F in growing steers fed medium-quality hay. Additionally, DDGS supplementation alters feeding behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.