The formation and decay of the optical hole (bleach) for 4 nm CdSe nanoparticles (NPs) with adsorbed electron acceptors (1,4-benzoquinone and 1,2-naphthoquinone) and the rise and decay of the reduced electron acceptors formed after interfacial electron transfer from the CdSe NPs were investigated by femtosecond laser spectroscopy. The ultrashort (200-400 fs) rise times of the bleach at the band-gap energy of the CdSe NP as well as of the acceptor radical anion are found to increase with increasing the excitation energy. This suggests that the electron transfer from the CdSe NP to the quinone electron acceptor occurs after thermalization of the excited hot electrons. The decay times of the transient absorption for the electron acceptor radical anions are found to be comparable to that of the CdSe NP bleach recovery time (3 ps). This suggests that the surface quinones shuttle the electron from the conduction band to the valence band of the excited NP. We contrast this behavior with the excited-state dynamics of the recently investigated CdS-MV 2+ system in which the electron acceptor does not shuttle the accepted electron back to the hole in CdS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.