Our recent study demonstrated that defects in p110delta result in B-cell immunodeficiency that is very similar to that observed in BTK-deficient mice. We revealed that the p110delta fit the B-cell signal transduction complex and played a non-redundant role in the development and function of B cells. In humans, most children with primary B-cell immunodeficiency have mutations in the BTK, whereas a few have defects in the components of the B-cell signal transduction complex. But little is known about the genetic variation of p110delta in children with defects in B-cell immunodeficiency of unknown aetiology. Sixteen patients from 15 unrelated families and 112 normal controls underwent sequence analysis to identify genetic variations of the p110delta. Allele frequency in each group was also analysed and compared. We identified five single base-pair polymorphic nucleotide exchanges in both patient and control groups with similar allele frequencies, which did not contribute to the immunodeficiency. Three of them are novel (m.953A>G, m.1200C>T and m.1561A>G), and the m.953A>G and m.1561A>G nucleotide exchanges are non-synonymous (N253S and T456A, respectively). The novel m.1561A>G was in complete linkage disequilibrium with the known m.873A>G in our study of Taiwanese group. In addition, one novel single base-pair missense mutation, m.3256G>A (E1021K), was identified in one boy with typical clinical features of primary B-cell immunodeficiency and could not be found in either his family or the normal control population. By atomic structural analysis of the amino acid as well as the alignment comparison between species, it resulted in the replacement of the negative-charged amino acid E with the positive-charged amino acid K at codon 1021, located in the highly conservative and important catalytic functional domain. Our findings could shed light on further understanding the polymorphisms of p110delta in B-cell immunodeficiency and different populations. Moreover, the 3256G>A missense mutation raised the attention and warranted further extensive analysis to elucidate the role of p110delta in human immunodeficiency.
Combustible gas (e.g., gasification syngas) cleaning at high temperatures can obtain further gains in energy efficiency for power generation and importantly leads to a simplified process and lower cost as a commercially viable source of clean energy. Thus, a feasibility study for high-temperature desulfurization (HTDS) and additional high-temperature particulate filtration (HTPF) of a raw syngas using ZnO sorbent-dispersed Raney CuO (ZnO/R-CuO) and ceramic filter (ZnO/CF) has been carried out. By synchrotron X-ray absorption near-edge structure (XANES) spectroscopy, mainly Zn(II) and Cu(II) are found in the ZnO/R-CuO sorbents. Both ZnO and R-CuO in the sorbents are involved in HTDS (1% H2S) at 873 K to form ZnS, Cu2S, and a small amount of CuS and reach relatively high HTDS efficiencies (82–90%). In addition, regeneration of the sulfurized sorbent by oxidation with O2 at 873 K (HTRG) for 1 h can restore ZnO and CuO for continuous and repetitive HTDS-HTRG cycles. To facilitate the HTDS engineering applications by the ZnO/R-CuO sorbents, their reaction rate constant (8.35 × 104 cm3/g/min) and activation energy (114.8 kJ/mol) at 873 K have also been determined. Furthermore, the ZnO/CF sorbent/filter can perform HTDS and additional HTPF at 873 K with very high particulate removal efficiencies (>98%). This demonstrates the feasibility for hot-syngas cleaning with a much better energy efficiency and lesser cost for cleaner power generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.