Here we report the results of searching millisecond pulsar (MSP) candidates from the Fermi LAT second source catalog (2FGL). Seven unassociated γ−ray sources in this catalog are identified as promising MSP candidates based on their γ-ray properties. Through the X-ray analysis, we have detected possible X-ray counterparts, localized to an arcsecond accuracy. We have systematically estimated their X-ray fluxes and compared with the corresponding γ-ray fluxes. The X-ray to γ-ray flux ratios for 2FGL J1653.6-0159 and 2FGL J1946.4-5402 are comparable with the typical value for pulsars. For 2FGL J1625.2-0020, 2FGL J1653.6-0159 and 2FGL J1946.4-5402, their candidate X-ray counterparts are bright enough for performing a detailed spectral and temporal analysis to discriminate their thermal/non-thermal nature and search for the periodic signal. We have also searched for possible optical/IR counterparts at the X-ray positions. For the optical/IR source coincident with the brightest X-ray object that associated with 2FGL J1120.0-2204, its spectral energy distribution is comparable with a late-type star. Evidence for the variability has also been found by examining its optical light curve. All the aforementioned 2FGL sources resemble a pulsar in one or more aspects, which make them as the promising targets for follow-up investigations.
We report multi-wavelength observations of the unidentified Fermi object 2FGL J1653.6-0159. With the help of high-resolution X-ray observation, we have identified an X-ray and optical counterpart of 2FGL J1653.6-0159. The source exhibits a periodic modulation of 75 min in optical and possibly also in X-ray. We suggest that 2FGL J1653.6-0159 is a compact binary system with an orbital period of 75 min. Combining the gamma-ray and X-ray properties, 2FGL J1653.6-0159 is potentially a black widow/redback type gamma-ray millisecond pulsar (MSP). The optical and X-ray lightcurve profiles show that the companion is mildly heated by the high-energy emission and the X-rays are from intrabinary shock. Although no radio pulsation has been detected yet, we estimated that the spin period of the MSP is ∼ 2 ms based on a theoretical model. If pulsation can be confirmed in the future, 2FGL J1653.6-0159 will become the first ultracompact rotation-powered MSP.
We report the optical identification of the companion to the Fermi black widow millisecond pulsar PSR J1544+4937. We find a highly variable source on Keck LRIS images at the nominal pulsar position, with 2 magnitude variations over orbital period in the B, g, R, and I bands. The nearly achromatic light curves are difficult to explain with a simply irradiated hemisphere model, and suggest that the optical emission is dominated by a nearly isothermal hot patch on the surface of the companion facing the pulsar. We roughly constrain the distance to PSR J1544+4937 to be between 2 and 5 kpc. A more reliable distance measurement is needed in order to constrain the composition of the companion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.