Objectives: To compare microarchitecture parameters of bone samples scanned using micro-CT (mCT) to those obtained by using CBCT. Methods: A bone biopsy trephine bur (3 3 10 mm) was used to remove 20 cylindrical bone samples from 20 dry hemimandibles. Samples were scanned using mCT (mCT 35; SCANCO Medical, Brüttisellen, Switzerland) with a voxel size of 20 mm and CBCT (3D Accuitomo 170; J. Morita, Kyoto, Japan) with a voxel size of 80 mm. All corresponding sample scans were aligned and cropped. Image analysis was carried out using BoneJ, including the following parameters: skeleton analysis, bone surface per total volume (BS/TV), bone volume per total volume (BV/TV), connectivity density, anisotropy, trabecular thickness and spacing, structure model index, plateness and fractal dimension. Pearson and Spearman correlation coefficients (R) were calculated. CBCT values were then calibrated using the slope of the linear fit with the mCT values. The mean error after calibration was calculated and normalized to the standard deviation of the mCT values. Results: R-values ranged between 0.05 (plateness) and 0.83 (BS/TV). Correlation was significant for both Spearman and Pearson's R for 8 out of 16 parameters. After calibration, the smallest normalized error was found for BV/TV (0.48). For other parameters, the error range was 0.58-2.10. Conclusions: Despite the overall correlation, this study demonstrates the uncertainty associated with using bone microarchitecture parameters on CBCT images. Although clinically relevant parameter ranges are not available, the errors found in this study may be too high for some parameters to be considered for clinical application.
Objective: To evaluate the effect of exposure parameters and voxel size on bone structure analysis in dental CBCT. Methods: 20 cylindrical bone samples underwent CBCT scanning (3D Accuitomo 170; J. Morita, Kyoto, Japan) using three combinations of tube voltage (kV) and tube currentexposure time product (mAs), corresponding with a CT dose index of 3.4 mGy: 90 kV and 62 mAs, 73 kV and 108.5 mAs, and 64 kV and 155 mAs. Images were reconstructed with a voxel size of 0.080 mm. In addition, the 90 kV scan was reconstructed at voxel sizes of 0.125, 0.160, 0.200, 0.250 and 0.300 mm. The following parameters were measured: bone surface (BS) and bone volume (BV) per total volume (TV), fractal dimension, connectivity density, anisotropy, trabecular thickness (Tb. Th.) and trabecular spacing (Tb. Sp.), structure model index (SMI), plateness, branches, junctions, branch length and triple points. Results: For most parameters, there was no significant effect of the kV value. For BV/TV, "90 kV" differed significantly from the other kV settings; for SMI, "64 vs 73 kV" was significant. For BS/TV, fractal dimension, connectivity density, branches, junctions and triple points values incrementally decreased at larger voxel sizes, whereas an increase was seen for Tb. Th., Tb. Sp., SMI and branch length. For anisotropy and plateness, no (or little) effect of voxel size was seen; for BV/TV, the effect was inconsistent. Conclusions: Most bone structure parameters are not affected by the kV if the radiation dose is constant. Parameters dealing with the trabecular structure are heavily affected by the voxel size. Dentomaxillofacial Radiology (2015Radiology ( ) 44, 20150078. doi: 10.1259 Cite this article as: Pauwels R, Faruangsaeng T, Charoenkarn T, Ngonphloy N, Panmekiate S. Effect of exposure parameters and voxel size on bone structure analysis in CBCT. Dentomaxillofac Radiol 2015; 44: 20150078.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.