We carry out systematic Monte Carlo simulations of Go lattice proteins to investigate and compare the folding processes of two model proteins whose native structures differ from each other due to the presence of a trefoil knot located near the terminus of one of the protein chains. We show that the folding time of the knotted fold is larger than that of the unknotted protein and that this difference in folding time is particularly striking in the temperature region below the optimal folding temperature. Both proteins display similar folding transition temperatures, which is indicative of similar thermal stabilities. By using the folding probability reaction coordinate as an estimator of folding progression we have found out that the formation of the knot is mainly a late folding event in our shallow knot system.
We examine the dynamical implications of an interaction between some of the
fluid components of the universe. We consider the combination of three matter
components, one of which is a perfect fluid and the other two are interacting.
The interaction term generalizes the cases found in scalar field cosmologies
with an exponential potential. We find that attracting scaling solutions are
obtained in several regions of parameter space, that oscillating behaviour is
possible, and that new curvature scaling solutions exist. We also discuss the
inflationary behaviour of the solutions and present some of the constraints on
the strength of the coupling, namely those arising from nucleosynthesis.Comment: RevTeX, 21 pages, 8 figure
We investigate the general asymptotic behaviour of Friedman-RobertsonWalker (FRW) models with an inflaton field, scalar-tensor FRW cosmological models and diagonal Bianchi-IX models by means of Liapunov's method. This method provides information not only about the asymptotic stability of a given equilibrium point but also about its basin of attraction. This cannot be obtained by the usual methods found in the literature, such as linear stability analysis or first order perturbation techniques. Moreover, Liapunov's method is also applicable to non-autonomous systems. We use this advantadge to investigate the mechanism of reheating for the inflaton field in FRW models.
We investigate a mechanism that generates exact solutions of scalar field cosmologies in a unified way. The procedure investigated here permits to recover almost all known solutions, and allows one to derive new solutions as well. In particular, we derive and discuss one novel solution defined in terms of the Lambert function. The solutions are organised in a classification which depends on the choice of a generating function which we have denoted by x(φ) that reflects the underlying thermodynamics of the model. We also analyse and discuss the existence of form-invariance dualities between solutions. A general way of defining the latter in an appropriate fashion for scalar fields is put forward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.