This research work has concerned a study on thermomechanical and crystallization properties of poly(lactic acid) (PLA) composites containing three different types of additives; namely: kenaf fiber (20 pph), Cloisite30B nanoclay (5 pph), and hexagonal boron nitrile (h-BN; 5 pph). The composites were prepared using a twin screw extruder before molding. Crystallization behaviors of the various composites were also examined using a differential scanning calorimetry. By adding the additives, tensile modulus of the polymer composites increased, whereas their tensile strength and elongation values decreased as compared to those of the neat PLA. Heat distortion temperature (HDT) values of the materials slightly increased, for about 3-5 C. However, after annealing at 100 C, HDT values of the fabricated PLA composites rapidly increased with annealing time before reaching a plateau after 10 min. The HDT values of above 120 C were achieved when 20 pph kenaf fiber was used as an additive. The above results were in a good agreement with DSC thermograms of the composites, indicating that percentage crystallinity of the materials increased on annealing and crystallization rate of the PLA/kenaf system was the highest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.