A nonlinear harmonic methodology is adopted to analyze interactions between adjacent stages in multi-stage compressors. Of particular interest are the effects of circumferential “aperiodic” distributions and the relative circumferential positioning (‘clocking’) of blades. The main feature of the present approach is that both the aperiodic and clocking effects are very efficiently included with circumferential “steady” harmonic disturbances. Consequently, a single run of the nonlinear harmonic solver using a single-passage domain can produce the whole annulus unsteady and aperiodic time-averaged flow field. In addition, performance variation at any clocking position can be obtained simply by post-processing the result. A case study is presented for a two-and-half-stage transonic compressor, and the present results show much stronger rotor-rotor interaction than stator-stator interaction. A mechanism leading to strong rotor-rotor interference seems to be the interaction between upstream rotor wakes and the downstream rotor passage shock waves. A rotor-rotor clocking study illustrates a qualitatively different loss variation with respect to clocking position in a transonic flow compared to that in a subsonic flow.
A nonlinear harmonic methodology is adopted to analyse interactions between adjacent stages in multi-stage compressors. Of particular interest are the effects of circumferential ‘aperiodic’ distributions and the relative circumferential positioning (‘clocking’) of blades. The main feature of the present approach is that both the aperiodic and clocking effects are very efficiently included with circumferential ‘steady’ harmonic disturbances. Consequently, a single run of the nonlinear harmonic solver using a single-passage domain can produce the whole annulus unsteady and aperiodic time-averaged flow field. In addition, performance variation at any clocking position can be obtained simply by post-processing the result. A case study is presented for a two and half stage transonic compressor, and the present results show much stronger rotor-rotor interaction than stator-stator interaction. A mechanism leading to strong rotor-rotor interference seems to be the interaction between upstream rotor wakes and the downstream rotor passage shock waves. A rotor-rotor clocking study illustrates a qualitatively different loss variation with respect to clocking position in a transonic flow compared to that in a subsonic flow.
An efficient non-linear harmonic methodology has been developed for predicting unsteady blade row interaction effects in multistage axial flow compressors. Flow variables are decomposed into time averaged variables and unsteady perturbations, resulting in time averaged equations with deterministic stress terms depending on the unsteady perturbation. The non-linear interaction between the time averaged flow field and the unsteady perturbations are included by a simultaneous pseudotime integration approach, leading to a strongly coupled solution. The stator/rotor interface treatment follows a flux averaged characteristic based mixing plane approach and includes the deterministic stress terms due to upstream running potential disturbances and downstream running wakes, resulting in the continuous nature of all parameters across the interface. The basic computational methodology is applied to the three-dimensional Navier-Stokes equations and validated against several cases. Results show that this method is much more efficient than the non-linear time-marching methods while still modeling the nonlinear unsteady blade row interaction effects.
In this paper, a spider monkey optimisation (SMO) algorithm is utilised to identify the parameters of the permanent magnet synchronous motor (PMSM), considering the parameters vary during the motor operation, which affects the sensorless control (SC) performance of the motor. An improved sliding mode observer (SOBS) is proposed for estimating the position and speed of the rotor. First, the SMO algorithm is used to identify the parameters of PMSM. Then, based on the identification results, an improved SOBS is proposed by a piecewise Sigmoid function. Furthermore, the stator position and speed are estimated by extended state observer (ESO) and phase-locked loop (PLL). Finally, a comparison simulation scenario is provided to demonstrate the efficacy of the suggested approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.