Background Little is known about the initial, symptomless (latent) phase of the devastating wheat disease Septoria tritici blotch. However, speculations as to its impact on fungal success and disease severity in the field have suggested that a long latent phase is beneficial to the host and can reduce inoculum build up in the field over a growing season. The winter wheat cultivar Stigg is derived from a synthetic hexaploid wheat and contains introgressions from wild tetraploid wheat Triticum turgidum subsp. dicoccoides , which contribute to cv. Stigg’s exceptional STB resistance, hallmarked by a long latent phase. We compared the early transcriptomic response to Zymoseptoria tritici of cv. Stigg to a susceptible wheat cultivar, to elucidate the mechanisms of and differences in pathogen recognition and disease response in these two hosts. Results The STB-susceptible cultivar Longbow responds to Z. tritici infection with a stress response, including activation of hormone-responsive transcription factors, post translational modifications, and response to oxidative stress. The activation of key genes associated with these pathways in cv. Longbow was independently observed in a second susceptible wheat cultivar based on an independent gene expression study. By comparison, cv. Stigg is apathetic in response to STB, and appears to fail to activate a range of defence pathways that cv. Longbow employs. Stigg also displays some evidence of sub-genome bias in its response to Z. tritici infection, whereas the susceptible cv. Longbow shows even distribution of Z. tritici responsive genes across the three wheat sub-genomes. Conclusions We identify a suite of disease response genes that are involved in early pathogen response in susceptible wheat cultivars that may ultimately lead to susceptibility. In comparison, we hypothesise that rather than an active defence response to stave off disease progression, cv. Stigg’s defence strategy is molecular lethargy, or a lower-amplitude of pathogen recognition that may stem from cv. Stigg’s wild wheat-derived ancestry. Overall, we present insights into cv. Stigg’s exceptional resistance to STB, and present key biological processes for further characterisation in this pathosystem.
Globally, bread wheat production is threatened by fungal diseases, including the devastating disease Septoria tritici blotch (STB). Given the global importance of STB, and the difficulty in identifying novel sources of resistance to this disease, we screened a variety of wheat genotypes, including wild, ancestral, and mutagenized lines, for their STB response. This delineated a panel of wild wheat relatives and Watkins collection lines with exceptional resistance to a range of Zymoseptoria tritici isolates, some of which are highly virulent on modern, elite wheat varieties. Additionally, we characterized the STB susceptibility of 500 lines of the wheat cultivar Cadenza TILLING population and developed backcross derivatives of two TILLING lines that show dominant partial resistance to STB. These backcross lines are partially resistant to multiple isolates of Z. tritici, and, with the wild and ancestral lines identified, provide a useful reservoir of STB‐resistant germplasm for use in wheat breeding programmes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.