Supercam is a 345 GHz, 64-pixel heterodyne imaging array for the Heinrich Hertz Submillimeter Telescope (HHSMT). By integrating SIS mixer devices with Low Noise Amplifiers (LNAs) in 8 -1x8 pixel modules, the size needed for the cryostat and the complexity of internal wiring is significantly reduced. All subsystems including the optics, cryostat, bias system, IF boxes, and spectrometer have been integrated for all 64 pixels. In the spring of 2012, SuperCam was installed on the HHSMT for an engineering run where it underwent system level tests and performed first light observations. In the fall of 2012 SuperCam will begin a 500 square degree survey of the Galactic Plane in 12 CO J=3-2. This large-scale survey will help answer fundamental questions about the formation, physical conditions, and energetics of molecular clouds within the Milky Way. The data set will be available via the web to all interested researchers.
In the wavelength regime between 60 and 300 microns there are a number of atomic and molecular emission lines that are key diagnostic probes of the interstellar medium. These include transitions of [CII], [NII], [OI], HD, H 2 D+, OH, CO, and H 2 O, some of which are among the brightest global and local far-infrared lines in the Galaxy. In Giant Molecular Clouds (GMCs), evolved star envelopes, and planetary nebulae, these emission lines can be extended over many arc minutes and possess complicated, often self absorbed, line profiles. High spectral resolution (R> 10 5 ) observations of these lines at sub-arcminute angular resolution are crucial to understanding the complicated interplay between the interstellar medium and the stars that form from it. This feedback is central to all theories of galactic evolution. Large format heterodyne array receivers can provide the spectral resolution and spatial coverage to probe these lines over extended regions.The advent of large format (~100 pixel) spectroscopic imaging cameras in the far-infrared (FIR) will fundamentally change the way astronomy is performed in this important wavelength regime. While the possibility of such instruments has been discussed for more than two decades, only recently have advances in mixer and local oscillator technology, device fabrication, micromachining, and digital signal processing made the construction of such instruments tractable. These technologies can be implemented to construct a sensitive, flexible, heterodyne array facility instrument for SOFIA. The instrument concept for StratoSTAR: Stratospheric Submm/THz Array Receiver includes a common user mounting, control system, IF processor, spectrometer, and cryogenic system. The cryogenic system will be designed to accept a frontend insert. The frontend insert and associated local oscillator system/relay optics would be provided by individual user groups and reflect their scientific interests. Rapid technology development in this field makes SOFIA the ideal platform to operate such a modular, continuously evolving instrument.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.