Previous studies have reported that some neurons in the inferior temporal (IT) cortex respond selectively to highly specific complex objects. In the present study, we conducted the first systematic survey of the responses of IT neurons to both simple stimuli, such as edges and bars, and highly complex stimuli, such as models of flowers, snakes, hands, and faces. If a neuron responded to any of these stimuli, we attempted to isolate the critical stimulus features underlying the response. We found that many of the responsive neurons responded well to virtually every stimulus tested. The remaining, stimulus-selective cells were often selective along the dimensions of shape, color, or texture of a stimulus, and this selectivity was maintained throughout a large receptive field. Although most IT neurons do not appear to be "detectors" for complex objects, we did find a separate population of cells that responded selectively to faces. The responses of these cells were dependent on the configuration of specific face features, and their selectivity was maintained over changes in stimulus size and position. A particularly high incidence of such cells was found deep in the superior temporal sulcus. These results indicate that there may be specialized mechanisms for the analysis of faces in IT cortex.
The middle temporal visual area (MT) in macaque extrastriate cortex is characterized by a high proportion of neurons selective for the direction of stimulus motion, and is thus thought to play an important role in motion perception. Previous studies identified a population of cells in MT that appeared capable of coding the motion of whole visual patterns independent of the motions of contours within them (Gizzi et al. 1983; Movshon et al. 1985). These "pattern-motion selective" neurons are unlike motion sensitive cells that have been observed at earlier stages of the visual system. Using very different criteria, we have also previously identified an apparently functionally distinct group of MT neurons (Albright 1984). We predicted that these "Type II" neurons correspond to the pattern-motion neurons. In the present study, we have applied both sets of criteria to individual neurons in MT and found that these two differently defined sets of cells actually form the same population. These results support the idea that MT contributes to a specialized type of motion processing which reflects the integrity of normal perception.
In a previous study (Rodman et al., 1989), we found that many neurons in the middle temporal area (MT) of the macaque monkey remain visually responsive and directionally selective after striate cortex lesions or cooling. In the present study, we examined the effects of superior colliculus (SC) lesions and combined lesions of striate cortex and the SC on the visual properties of MT neurons. Removal of the SC alone had no effect on the proportion of visually responsive cells, strength of direction selectivity and direction tuning, orientation tuning, receptive field size, or binocularity in MT. There was, however, a slight increase in response strength to both stationary and moving slit stimuli. In contrast to the minor effects of SC lesions alone, addition of an SC lesion to striate cortex damage abolished all visual responsiveness in area MT. The results indicate that pathways damaged by the SC lesion are not necessary for most of the properties of MT neurons found in the intact animal, although these pathways are capable of sustaining considerable visual responsiveness and direction selectivity when striate input is removed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.