Mantle plumes are buoyant upwellings of hot rock that transport heat from Earth's core to its surface, generating anomalous regions of volcanism that are not directly associated with plate tectonic processes. The best-studied example is the Hawaiian-Emperor chain, but the emergence of two sub-parallel volcanic tracks along this chain, Loa and Kea, and the systematic geochemical differences between them have remained unexplained. Here we argue that the emergence of these tracks coincides with the appearance of other double volcanic tracks on the Pacific plate and a recent azimuthal change in the motion of the plate. We propose a three-part model that explains the evolution of Hawaiian double-track volcanism: first, mantle flow beneath the rapidly moving Pacific plate strongly tilts the Hawaiian plume and leads to lateral separation between high- and low-pressure melt source regions; second, the recent azimuthal change in Pacific plate motion exposes high- and low-pressure melt products as geographically distinct volcanoes, explaining the simultaneous emergence of double-track volcanism across the Pacific; and finally, secondary pyroxenite, which is formed as eclogite melt reacts with peridotite, dominates the low-pressure melt region beneath Loa-track volcanism, yielding the systematic geochemical differences observed between Loa- and Kea-type lavas. Our results imply that the formation of double-track volcanism is transitory and can be used to identify and place temporal bounds on plate-motion changes.
It has been proposed that the spatial variations recorded in the geochemistry of hotspot lavas, such as the bilateral asymmetry recorded at Hawaii, can be directly mapped as the heterogeneous structure and composition of their deep-mantle source. This would imply that source-region heterogeneities are transported into, and preserved within, a plume conduit, as the plume rises from the deep-mantle to Earth's surface. Previous laboratory and numerical studies, which neglect density and rheological variations between different chemical components, support this view. However, in this paper, we demonstrate that this interpretation cannot be extended to distinct chemical domains that differ from surrounding mantle in their density and viscosity. By numerically simulating thermo-chemical mantle plumes across a broad parameter space, in 2-D and 3-D, we identify two conduit structures: (i) bilaterally asymmetric conduits, which occur exclusively for cases where the chemical effect on buoyancy is negligible, in which the spatial distribution of deep-mantle heterogeneities is preserved during plume ascent; and (ii) concentric conduits, which occur for all other cases, with dense material preferentially sampled within the conduit's centre. In the latter regime, the spatial distribution of geochemical domains in the lowermost mantle is not preserved during plume ascent. Our results imply that the heterogeneous structure and composition of Earth's lowermost mantle can only be mapped from geochemical observations at Earth's surface if chemical heterogeneity is a passive component of lowermost mantle dynamics (i.e. its effect on density is outweighed by, or is secondary to, the effect of temperature). The implications of our results for: (i) why oceanic crust should be the prevalent component of ocean island basalts; and (ii) how we interpret the geochemical evolution of Earth's deep-mantle are also discussed.
Mantle tomography reveals the existence of two large low-shear-velocity provinces (LLSVPs) at the base of the mantle. We examine here the hypothesis that they are piles of oceanic crust that have steadily accumulated and warmed over billions of years. We use existing global geodynamic models in which dense oceanic crust forms at divergent plate boundaries and subducts at convergent ones. The model suite covers the predicted density range for oceanic crust over lower mantle conditions. To meaningfully compare our geodynamic models to tomographic structures, we convert them into models of seismic wavespeed and explicitly account for the limited resolving power of tomography. Our results demonstrate that long-term recycling of dense oceanic crust naturally leads to the formation of thermochemical piles with seismic characteristics similar to the LLSVPs. The extent to which oceanic crust contributes to the LLSVPs depends upon its density in the lower mantle for which accurate data is lacking. We find that the LLSVPs are not composed solely of oceanic crust. Rather, they are basalt rich at their base (bottom 100-200 km) and grade into peridotite toward their sides and top with the strength of their seismic signature arising from the dominant role of temperature. We conclude that recycling of oceanic crust, if sufficiently dense, has a strong influence on the thermal and chemical evolution of Earth's mantle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.