Two experiments were conducted to evaluate the influence of vaccination on the acute-phase protein (APP) reaction (Exp. 1 and 2) and measures of performance (Exp. 2) in growing beef calves. In Exp. 1, the APP reaction was assessed in newly weaned steers administered 1 of 3 treatments (n = 8 steers/treatment), consisting of 1) Mannheimia haemolytica vaccine (One Shot; Pfizer Inc., New York, NY), 2) Clostridium vaccine (UltraBac 7; Pfizer, Inc.), or 3) saline-injected control. Blood samples for the evaluation of APP concentrations were collected on d 0, 1, 3, 5, 7, 10, and 14 and steer BW measured on d 0 and 21 relative to treatment administration. Plasma concentrations of haptoglobin (Hp) increased (P < 0.05) in vaccinated but not control calves and reached a peak on d 3 and 5 for steers receiving Mannheimia haemolytica and Clostridium vaccine, respectively. Plasma concentrations of ceruloplasmin (Cp) and fibrinogen (Fb) increased (P < 0.05) in all calves after treatment administration and Fb concentrations were greatest (P < 0.01) in calves receiving Mannheimia haemolytica vaccine on d 3 and 5 compared with the other treatments. There were no treatment effects (P = 0.44) on 21-d steer ADG (0.43 kg/d; SEM = 0.082). In Exp. 2, 23 heifers were randomly assigned to 2 treatments: 1) vaccinated (Mannheimia haemolytica vaccine (One Shot; n = 12) and 2) saline control (n = 11). After vaccination, blood samples were collected for determination of APP concentrations on d 0, 3, 6, 9, 12, and 15. During this period, individual heifer DMI was measured using an automated feed intake measuring system (Model 4000E; GrowSafe Systems Ltd., Airdrie, Alberta, Canada). Initial and final shrunk BW did not differ (P > 0.36) among treatments. On d 1, plasma Cp concentrations increased (P < 0.01) sharply in vaccinated heifers but not control heifers and were greater (P < 0.05) in vaccinated vs. control heifers on d 3, 6, 9, and 12 relative to injection. Daily DMI did not differ (P = 0.66) among treatments (average = 9.1 kg/d; SEM = 0.34); however, ADG and G:F were greater (P ≤ 0.05) for control vs. vaccinated heifers (1.14 vs. 0.87 kg/d and 0.13 and 0.10 kg, respectively; SEM = 0.064 and 0.011). These data indicate that within a 2 wk period after vaccination, beef calves experience an acute-phase protein response, which may result in reduced ADG and feed efficiency.
To assess the effects of flax addition and flax processing on feedlot performance and carcass characteristics, 128 yearling beef heifers (360 +/- 14 kg of initial BW) were blocked by weight and assigned randomly to feedlot diets that included no flax (control), whole flax (WHL), rolled flax (RLD; 1,300 microm), or ground flax (GRD; 700 microm). Heifers were fed a growth diet (31% corn, 30% corn silage, 18% barley malt pellets, 14% alfalfa, 4% linseed meal, and 3% supplement; DM basis) for 56 d, after which they were adapted to a finishing diet (79% corn, 7% corn silage, 7% alfalfa, 4.75% linseed meal, and 2.25% supplement; DM basis). In WHL, RLD, and GRD, flax replaced all linseed meal and partially replaced corn at 8% of diet DM. All diets provided 0.5 mg of melengestrol acetate, 2,000 IU of vitamin E, and 232 mg of monensin per heifer daily. Cattle were slaughtered by block after 96, 97, and 124 (2 blocks) d on feed. At 24 h postmortem, carcass data were collected, and a portion of the loin was removed, vacuum-packaged, and aged for 14 d. After aging, 2 steaks were removed from each loin for Warner-Bratzler shear force measurement, sensory panel evaluation, and fatty acid analysis (approximately 100 g of muscle was collected). Flax inclusion (WHL, RLD, and GRD vs. control) did not affect DMI (P = 0.79), fat thickness over the 12th rib (P = 0.32), or LM area (P = 0.23). Flax inclusion increased ADG (P = 0.006), G:F (P = 0.006), and USDA yield grade (P = 0.01). Flax processing (RLD and GRD vs. WHL) increased ADG (P = 0.05), G:F (P = 0.08), and apparent dietary NEm and NEg (P = 0.003). Muscle from heifers fed flax had greater phospholipid 18:3n-3 (P < 0.001), 20:5n-3 (P < 0.001), 22:5n-3 (P < 0.001), and 22:6n-3 (P = 0.02) fractions, and greater neutral lipid 18:3n-3 (P < 0.001). Feeding 8% flax to feedlot heifers increased gain and efficiency, and processing flax increased available energy and resulted in increased efficiency of gain. Feeding 8% flax also increased levels of n-3 fatty acids in fresh beef.
Seventy-four beef heifers were used to evaluate relationships among performance, residual feed intake (RFI), and temperament measured as growing heifers (Phase 1) and subsequently as 3-yr-old lactating beef cows (Phase 2) in the same cohort. In both phases, females were housed in a covered facility and fed similar forage-based diets, and individual feed intakes, BW, BCS, chute scores (CS), exit velocities (EV), and pen scores (PS) were collected throughout the 70-d feeding trials. In Phase 2, cows were milked on trial d 14 (lactation d 28 ± 3.5) and trial d 70 (lactation d 84 ± 3.5) to determine energy-corrected milk (ECM) production. Ultrasonic backfat thickness (BF), and ribeye area (REA) were evaluated on d 0 and 70 of the trial in Phase 2. Heifers were ranked by RFI and placed into Low (<0.5 SD mean RFI; n = 27), Medium (within ± 0.5 SD; n = 23), and High (>0.5 SD mean RFI; n = 24) RFI groups. Body weight, BCS, and ADG were similar among all RFI groups; however, daily DMI differed for all groups (P < 0.01) and was greater (10.76 ± 0.24 kg/d) for High, intermediate (9.88 ± 0.25 kg/d) for Medium, and less (8.52 ± 0.23 kg/d) for Low RFI heifers. When cow performance was analyzed based on RFI rank as heifers, BW, BCS, ADG, RFI, d 14 and d 70 ECM, BF, and REA were similar among RFI groups; however, cows that were most efficient as heifers (Low) had decreased (P < 0.05) daily DMI values (10.30 ± 0.41 kg/d) compared with cows that ranked Medium (11.60 ± 0.44 kg/d) or High (11.50 ± 0.43 kg/d) as heifers. The Pearson rank correlation between Phase 1 and 2 RFI was r = 0.13 (P = 0.30), and Pearson rank correlations showed no relationship (P > 0.1) between RFI and temperament. Phase 1 CS was negatively associated with ADG in Phase 1 (r = -0.28; P = 0.02) and 2 (r = -0.32; P = 0.01), and positively associated with d 14 (r = 0.24; P = 0.04) and 70 (r = 0.25; P = 0.03) ECM. Phase 2 CS was negatively associated with Phase 2 ADG (r = -0.29; P = 0.01) and positively associated with d 14 (r = 0.46; P = 0.001) and 70 (r = 0.33; P = 0.004) ECM. Phase 2 PS also tended to be negatively associated with DMI in Phase 1 (r = -0.20; P = 0.096) and 2 (r = -0.20; P = 0.08). In this study, heifers that were most feed efficient subsequently consumed less feed as lactating cows and maintained similar performance. Feed efficiency was not associated with differences in temperament; however, more excitable females had poorer BW gains and tended to have reduced feed intakes but produced more ECM.
The objective of this experiment was to examine the effect of castration technique on daily feed intake (DFI), daily water intake (DWI), growth performance, residual feed intake (RFI), and inflammatory response in weaned beef calves. Seventy-five beef calves (214 ± 3.2 kg; 200 ± 26 d of age) were housed in a GrowSafe 4000 feed intake facility 7 d post weaning (15 calves/pen). Calves were offered a total mixed ration (TDN = 67.3% and CP = 12.2%, DM = 89%) for ad libitum consumption. On d 0, calves were assigned to 1 of 5 treatments (n = 15 calves/treatment): 1) steers castrated surgically pre-weaning (52 d of age; CON); 2) intact bulls (BULL); 3) bulls castrated by the Callicrate Bander on d 0 (No-Bull Enterprises LLC.; BAN); 4) bulls castrated by the Henderson Castrating Tool on d 0 (Stone Mfg & Supply Co.; HEN); and 5) bulls castrated surgically utilizing an emasculator on d 0 (SUR). Average daily gain, DFI, and DWI were recorded over 84 d. Blood was collected from a sub-sample of calves (n = 45) on d 0, 2, 6, 9, 12, and 15 relative to castration. Castration decreased (P = 0.06) ADG for castrates compared with CON from d 0 to 14 but not d 0 to 84. Daily feed intake and DWI were similar (P > 0.10) among treatments during d 0 to 84. Gain:feed was not affected by castration technique; however, RFI tended (P = 0.09) to be negative for CON and BULL compared with castrates on d 0 to 14 but not d 0 to 84. Acute phase protein analyses indicated that surgical castration (SUR or HEN) elicited a short-term inflammatory response in calves, whereas calves castrated with BAN elicited a delayed response. Calves castrated pre-weaning had improved d 0 to 14 ADG, feed intake, and inflammation response compared with calves castrated at weaning. Banding elicited a delayed negative response in ADG, DWI, and inflammation. In weaned calves, castration method did not affect performance, DFI, DWI, or inflammatory response during the 84-d trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.