Recent results are presented for turbulence in tokamak boundary plasmas and its relationship to the low-to-high confinement (L–H) transition in a realistic divertor geometry. These results are obtained from a three-dimensional (3D) nonlocal electromagnetic turbulence code, which models the boundary plasma using fluid equations for plasma vorticity, density, electron and ion temperatures and parallel momenta. With sources added in the core-edge region and sinks in the scrape-off layer (SOL), the code follows the self-consistent profile evolution together with turbulence. Under DIII-D [Luxon et al., International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1986), p. 159] tokamak L-mode conditions, the dominant source of turbulence is pressure-gradient-driven resistive X-point modes. These modes are electromagnetic and curvature-driven at the outside mid-plane region but become electrostatic near X-points due to magnetic shear and collisionality. Classical resistive ballooning modes at high toroidal mode number, n, coexist with these modes but are sub-dominant. Results indicate that, as the power is increased, these modes are stabilized by increased turbulence-generated velocity shear, resulting in an abrupt suppression of high-n turbulence and the formation of a pedestal in density and temperature, as is characteristic of the H-mode transition. The sensitivity of the boundary turbulence to the direction of the toroidal field Bt is discussed.
This study, called APEX, is exploring novel concepts for fusion chamber technology that can substantially improve the attractiveness of fusion energy systems. The emphasis of the study is on fundamental understanding and advancing the underlying engineering sciences, integration of the physics and engineering requirements, and enhancing innovation for the chamber technology components surrounding the plasma. The chamber technology goals in APEX include: (1) high power density capability with neutron wall load \ 10 MW/m 2 and surface heat flux \ 2 MW/m 2 , (2) high power conversion efficiency ( \ 40%), (3) high availability, and (4) simple technological and material constraints. Two classes of innovative concepts have emerged that offer great promise and deserve further (2001) 181-247 182 research and development. The first class seeks to eliminate the solid ''bare'' first wall by flowing liquids facing the plasma. This liquid wall idea evolved during the APEX study into a number of concepts based on: (a) using liquid metals (Li or Sn-Li) or a molten salt (Flibe) as the working liquid, (b) utilizing electromagnetic, inertial and/or other types of forces to restrain the liquid against a backing wall and control the hydrodynamic flow configurations, and (c) employing a thin ( 2 cm) or thick ( 40 cm) liquid layer to remove the surface heat flux and attenuate the neutrons. These liquid wall concepts have some common features but also have widely different issues and merits. Some of the attractive features of liquid walls include the potential for: (1) high power density capability; (2) higher plasma b and stable physics regimes if liquid metals are used; (3) increased disruption survivability; (4) reduced volume of radioactive waste; (5) reduced radiation damage in structural materials; and (6) higher availability. Analyses show that not all of these potential advantages may be realized simultaneously in a single concept. However, the realization of only a subset of these advantages will result in remarkable progress toward attractive fusion energy systems. Of the many scientific and engineering issues for liquid walls, the most important are: (1) plasma-liquid interactions including both plasma-liquid surface and liquid wall-bulk plasma interactions; (2) hydrodynamic flow configuration control in complex geometries including penetrations; and (3) heat transfer at free surface and temperature control. The second class of concepts focuses on ideas for extending the capabilities, particularly the power density and operating temperature limits, of solid first walls. The most promising idea, called EVOLVE, is based on the use of a high-temperature refractory alloy (e.g. W -5% Re) with an innovative cooling scheme based on the use of the heat of vaporization of lithium. Calculations show that an evaporative system with Li at 1 200°C can remove the goal heat loads and result in a high power conversion efficiency. The vapor operating pressure is low, resulting in a very low operating stress in the structure. In ad...
A two-dimensional calculation is presented for the transport of plasma in the edge region of a divertor tokamak solving continuity, momentum, and energy balance fluid equations. The model uses classical processes of parallel transport along the magnetic field and cross-field drifts together with anomalous radial diffusion, including perpendicular ion viscosity. The self-consistent electrostatic potential is calculated on both sides of the magnetic separatrix via quasineutrality and current continuity. Outside the separatrix, the model extends to material divertor plates where the incident plasma is recycled as neutral gas and where the plate sheath and parallel currents dominate the potential structure. Inside the separatrix, various radial current terms—from anomalous viscosity, collisional damping, inertia, and ∇B drifts—contribute to determining the potential. The model rigorously enforces cancellation of gyroviscous and magnetization terms from the transport equations. The results emphasize the importance of E×B particle flow under the X-point which depends on the sign of the toroidal magnetic field. Radial electric field profiles at the outer midplane show strong variation with the magnitude of the anomalous diffusion coefficients and the core toroidal rotation velocity, indicating that shear stabilization of edge turbulence can likewise be sensitive to these parameters.
A simple analytic model valid for all collisionality regimes is developed to describe the power deposition in a cylindrical inductively coupled plasma source with a planar coil. The heating is ohmic at high pressures and remains finite at low pressures. The low-pressure collisionless heating is due to kinetic nonlocal effects. The model is in good agreement with other calculations of collisionless heating. A diffusion model is then used to determine the plasma density profile and the electron temperature in terms of the gas pressure and the source geometry. The heating and diffusion models are used to determine the scaling of the inductive electric field with applied frequency and input power, and the results are compared with published experimental data to verify the scaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.