Under physiological conditions, the laryngeal synapse of male Xenopus laevis exhibits marked facilitation during repetitive nerve stimulation. The male laryngeal synapse is weak and requires facilitation to produce muscle action potentials and ultimately sound. The female laryngeal synapse is strong: muscle contractions are produced to single nerve stimuli. We sought to determine if laryngeal synapses of males and females also differ in their ability to facilitate. To measure facilitation, laryngeal muscle action potentials were suppressed either postsynaptically by bathing the preparation in saline containing curare or presynaptically by bathing the preparation in reduced calcium/elevated magnesium saline. Facilitation of postsynaptic potential amplitude or quantal content in response to paired pulses was measured in male and female larynges: there is no sex difference in paired pulse facilitation. Facilitation in response to trains of stimuli, in curare-blocked preparations, increased and reached plateau values more rapidly in females than in males, although the facilitation between the last and first pulses in the train was the same in the sexes. Thus, the sexually differentiated behavior of this synapse is controlled more by a sex difference in synaptic strength than by a sex difference in the ability to facilitate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.