The neutral amino acid transporter alanine-serine-cysteine transporter 2 (ASCT2) belongs to the solute carrier 1 (SLC1) family of solute transporters and transports small, neutral amino acids across the membrane, including the physiologically important and ubiquitous amino acid glutamine. Our understanding of the involvement of ASCT2 in the physiological processes involving glutamine is hampered by a lack of understanding of its pharmacology and the absence of high-affinity inhibitors. In this study, we combined an in silico docking approach with experimental investigation of binding parameters to develop new ASCT2 inhibitors and substrates, a series of serine esters, and to determine structural parameters that govern their functional effects. The series of compounds was synthesized using standard methods and exhibited a range of properties, from inhibitors to partial substrates and full substrates. Our results suggest that amino acid derivatives with small side-chain volume and low side-chain hydrophobicity interact strongly with the closed-loop form of the binding site, in which re-entrant loop 2, the presumed extracellular gate for the substrate binding site, is closed off. However, these derivatives bind weakly to the open-loop form (external gate open to the extracellular side), acting as transported substrates. In contrast, inhibitors bind preferentially to the open-loop form. An aromatic residue in the side chain is required for high-affinity interaction. One of the compounds, the L-serine ester serine biphenyl-4-carboxylate reversibly inhibits ASCT2 function with an apparent affinity of 30 M.
X-ray photoemission spectroscopy is used in a great variety of research fields; one observable is the sample's stoichiometry. The stoichiometry can be deduced based on the expectation that the ionization cross sections for innershell orbitals are independent of the molecular composition. Here we used chlorine-substituted ethanes in the gas phase to investigate the apparent carbon stoichiometry. We observe a nonstoichiometric ratio for a wide range of photon energies, the ratio exhibits x-ray-absorption fine structure spectroscopy (EXAFS)-like oscillations and hundreds of eV above the C1s ionization approaches a value far from 1. These effects can be accounted for by considering the scattering of the outgoing photoelectron, which we model by multiple-scattering EXAFS calculations, and by considering the effects of losses due to monopole shakeup and shakeoff and to intramolecular inelastic scattering processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.