Rapid earthquake magnitude estimation from real-time space-based geodetic observation streams provides an opportunity to mitigate the impact of large and potentially damaging earthquakes by issuing low-latency warnings prior to any significant and destructive shaking. Geodetic contributions to earthquake characterization and rapid magnitude estimation have evolved in the last 20 yr, from post-processed seismic waveforms to, more recently, improved capacity of regional geodetic networks enabled real-time Global Navigation Satellite System seismology using precise point positioning (PPP) displacement estimates. In addition, empirical scaling laws relating earthquake magnitude to peak ground displacement (PGD) at a given hypocentral distance have proven effective in rapid earthquake magnitude estimation, with an emphasis on performance in earthquakes larger than ∼Mw 6.5 in which near-field seismometers generally saturate. Although the primary geodetic contributions to date in earthquake early warning have focused on the use of 3D position estimates and displacements, concurrent efforts in time-differenced carrier phase (TDCP)-derived velocity estimates also have demonstrated that this methodology has utility, including similarly derived empirical scaling relationships. This study builds upon previous efforts in quantifying the ambient noise of three-component ground-displacement and ground-velocity estimates. We relate these noise thresholds to expected signals based on published scaling laws. Finally, we compare the performance of PPP-derived PGD to TDCP-derived peak ground velocity (PGV), given several rich event datasets. Our results indicate that TDCP-PGV is more likely than PPP-PGD to detect intermediate magnitude (∼Mw 5.0–6.0) earthquakes, albeit with greater magnitude estimate uncertainty and across smaller epicentral distances. We conclude that the computationally lightweight TDCP-derived PGV magnitude estimation is complementary to PPP-derived PGD magnitude estimates, which could be produced at the network edge at high rates and with increased sensitivity to ground motion than current PPP estimates.
High rate Global Navigation Satellite System (GNSS) processed time series capture a broad spectrum of earthquake strong motion signals, but experience regular sporadic noise that can be difficult to distinguish from true seismic signals. The range of possible seismic signal frequencies amidst a high, location‐varying noise floor makes filtering difficult to generalize. Existing methods for automatic detection rely on external inputs to mitigate false alerts, which limit their usefulness. For these reasons, geodetic seismic signal detection makes for a compelling candidate for data‐driven machine learning classification. In this study we generated high rate GNSS time differenced carrier phase (TDCP) velocity time series concurrent in space and time with expected signals from 77 earthquakes occurring over nearly 20 years. TDCP velocity processing has increased sensitivity relative to traditional geodetic displacement processing without requiring sophisticated corrections. We trained, validated and tested a random forest classifier to differentiate seismic events from noise. We find our supervised random forest classifier outperforms the existing detection methods in stand‐alone mode by combining frequency and time domain features into decision criteria. The classifier achieves a 90% true positive rate of seismic event detection within the data set of events ranging from MW4.8–8.2, with typical detection latencies seconds behind S‐wave arrivals. We conclude the performance of this model provides sufficient confidence to enable these valuable ground motion measurements to run in stand‐alone mode for development of edge processing, geodetic infrastructure monitoring and inclusion in operational ground motion observations and models.
Observations of strong ground motion during large earthquakes are generally made with strong-motion accelerometers. These observations have a critical role in early warning systems, seismic engineering, source physics studies, basin and site amplification, and macroseismic intensity estimation. In this manuscript, we present a new observation of strong ground motion made with very high rate (>= 5 Hz) Global Navigation Satellite System (GNSS) derived velocities. We demonstrate that velocity observations recorded on GNSS instruments are consistent with existing ground motion models and macroseismic intensity observations. We find that the ground motion predictions using existing NGA-West2 models match our observed peak ground velocities with a median log total residual of 0.03-0.33 and standard deviation of 0.72-0.79, and are statistically significant following normality testing. We finish by deriving a Ground Motion Model for peak ground velocity from GNSS and find a total residual standard deviation 0.58, which can be improved by ~2% when considering a simple correction for Vs30.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.