Climate change and sea level rise have increased the frequency and severity of flooding events in coastal communities. This study quantifies transportation impacts of recurring flooding using crowdsourced traffic and flood incident data. Agency-provided continuous count station traffic volume data at 12 locations is supplemented by crowd-sourced traffic data from location-based apps in Norfolk, Virginia, to assess the impacts of recurrent flooding on traffic flow. A random forest data predictive model utilizing roadway features, traffic flow characteristics, and hydrological data as inputs scales the spatial extent of traffic volume data from 12 to 7736 roadway segments. Modeling results suggest that between January 2017 and August 2018, City of Norfolk reported flood events reduced 24 h citywide vehicle-hours of travel (VHT) by 3%, on average. To examine the temporal and spatial variation of impacts, crowdsourced flood incident reports collected by navigation app Waze between August 2017 and August 2018 were also analyzed. Modeling results at the local scale show that on weekday afternoon and evening periods, flood-impacted areas experience a statistically significant 7% reduction in VHT and 12% reduction in vehiclemiles traveled, on average. These impacts vary across roadway types, with substantial decline in traffic volumes on freeways, while principal arterials experience increased traffic volumes during flood periods. Results suggest that analyzing recurring flooding at the local scale is more prudent as the impact is temporally and spatially heterogeneous. Furthermore, countermeasures to mitigate impacts require a dynamic strategy that can adapt to conditions across various time periods and at specific locations.
Injuries and fatalities for vulnerable road users, especially bicyclists and pedestrians, are on the rise. To better inform design for vulnerable road users, we need to evaluate how bicyclist and pedestrian behavior and physiological states change in different roadway design and contextual settings. Previous research highlights the advantages of using immersive virtual environments (IVEs) in conducting bicyclist and pedestrian studies. These environments do not put participants at risk of injury, are low cost compared to on-road or naturalistic studies, and allow researchers to fully control variables of interest. In this paper, we propose a framework, Omni-Reality and Cognition Lab Simulator (ORCLSim), to support human sensing techniques within IVEs to evaluate bicyclist and pedestrian physiological and behavioral changes in different contextual settings. To showcase this framework, we present two case studies, where pilot data from five participants’ physiological and behavioral responses in an IVE setting are collected and analyzed, representing real-world roadway segments and traffic conditions. Results from these case studies indicate that physiological data are sensitive to road environment changes and real-time events in the IVE, especially changes in heart rate and gaze behavior. In addition, our preliminary data indicate participants may respond differently to various roadway settings (e.g., signalized vs. unsignalized intersections). By analyzing these changes, future studies can identify how participants’ stress level and cognitive load are impacted by the surrounding environment. The ORCLSim system architecture is a prototype that can be customized for future studies in understanding users’ behavioral and physiological responses in virtual reality settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.