A constructive neural-network algorithm is presented. For any consistent classification task on real-valued training vectors, the algorithm constructs a feedforward network with a single hidden layer of threshold units which implements the task. The algorithm, which we call CARVE, extends the "sequential learning" algorithm of Marchand et al. from Boolean inputs to the real-valued input case, and uses convex hull methods for the determination of the network weights. The algorithm is an efficient training scheme for producing near-minimal network solutions for arbitrary classification tasks. The algorithm is applied to a number of benchmark problems including Gorman and Sejnowski's sonar data, the Monks problems and Fisher's iris data. A significant application of the constructive algorithm is in providing an initial network topology and initial weights for other neural-network training schemes and this is demonstrated by application to backpropagation.
A gradient descent algorithm suitable for training multilayer feedforward networks of processing units with hard-limiting output functions is presented. The conventional backpropagation algorithm cannot be applied in this case because the required derivatives are not available. However, if the network weights are random variables with smooth distribution functions, the probability of a hard-limiting unit taking one of its two possible values is a continuously differentiable function. In the paper, this is used to develop an algorithm similar to backpropagation, but for the hard-limiting case. It is shown that the computational framework of this algorithm is similar to standard backpropagation, but there is an additional computational expense involved in the estimation of gradients. Upper bounds on this estimation penalty are given. Two examples which indicate that, when this algorithm is used to train networks of hard-limiting units, its performance is similar to that of conventional backpropagation applied to networks of units with sigmoidal characteristics are presented.
We present the results of applying automated machine learning techniques to the problem of matching different object catalogues in astrophysics. In this study, we take two partially matched catalogues where one of the two catalogues has a large positional uncertainty. The two catalogues we used here were taken from the H i Parkes All Sky Survey (HIPASS) and SuperCOSMOS optical survey. Previous work had matched 44 per cent (1887 objects) of HIPASS to the SuperCOSMOS catalogue.
A supervised learning algorithm was then applied to construct a model of the matched portion of our catalogue. Validation of the model shows that we achieved a good classification performance (99.12 per cent correct).
Applying this model to the unmatched portion of the catalogue found 1209 new matches. This increases the catalogue size from 1887 matched objects to 3096. The combination of these procedures yields a catalogue that is 72 per cent matched.
This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as backpropagation and can also be used to provide insight into the learning process and the nature of the error surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.