Modern data acquisition and trigger systems require a throughput of several GB/s and latencies of the order of microseconds. To satisfy such requirements, a heterogeneous readout system based on FPGA readout cards and GPU-based computing nodes coupled by InfiniBand has been developed. The incoming data from the back-end electronics is delivered directly into the internal memory of GPUs through a dedicated peer-to-peer PCIe communication. High performance DMA engines have been developed for direct communication between FPGAs and GPUs using “DirectGMA (AMD)” and “GPUDirect (NVIDIA)” technologies. The proposed infrastructure is a candidate for future generations of event building clusters, high-level trigger filter farms and low-level trigger system. In this paper the heterogeneous FPGA-GPU architecture will be presented and its performance be discussed.
Modern physics experiments produce multi-GB/s data rates. Fast data links and high performance computing stages are required for continuous data acquisition and processing. Because of their intrinsic parallelism and computational power, GPUs emerged as an ideal solution to process this data in high performance computing applications. In this paper we present a high-throughput platform based on direct FPGA-GPU communication. The architecture consists of a Direct Memory Access (DMA) engine compatible with the Xilinx PCI-Express core, a Linux driver for register access, and high-level software to manage direct memory transfers using AMD's DirectGMA technology. Measurements with a Gen3 x8 link show a throughput of 6.4 GB/s for transfers to GPU memory and 6.6 GB/s to system memory. We also assess the possibility of using the architecture in low latency systems: preliminary measurements show a round-trip latency as low as 1 µs for data transfers to system memory, while the additional latency introduced by OpenCL scheduling is the current limitation for GPU based systems. Our implementation is suitable for real-time DAQ system applications ranging from photon science and medical imaging to High Energy Physics (HEP) systems. K: Trigger concepts and systems (hardware and software); Data acquisition concepts; Digital electronic circuits 1Corresponding author.
In this work, we investigate the use of GPUs as a way of realizing a low-latency, high-throughput track trigger, using CMS as a showcase example. The CMS detector at the Large Hadron Collider (LHC) will undergo a major upgrade after the long shutdown from 2024 to 2026 when it will enter the high luminosity era. During this upgrade, the silicon tracker will have to be completely replaced. In the High Luminosity operation mode, luminosities of 5 -7 × 10 34 cm −2 s −1 and pileups averaging at 140 events, with a maximum of up to 200 events, will be reached. These changes will require a major update of the triggering system. The demonstrated systems rely on dedicated hardware such as associative memory ASICs and FPGAs. We investigate the use of GPUs as an alternative way of realizing the requirements of the L1 track trigger. To this end we implemeted a Hough transformation track finding step on GPUs and established a low-latency RDMA connection using the PCIe bus. To showcase the benefits of floating point operations, made possible by the use of GPUs, we present a modified algorithm. It uses hexagonal bins for the parameter space and leads to a more truthful representation of the possible track parameters of the individual hits in Hough space. This leads to fewer duplicate candidates and reduces fake track candidates compared to the regular approach. With data-transfer latencies of 2 µs and processing times for the Hough transformation as low as 3.6 µs, we can show that latencies are not as critical as expected. However, computing throughput proves to be challenging due to hardware limitations. K : Trigger concepts and systems (hardware and software), Trigger algorithms, Computing (architecture, farms, GRID for recording, storage, archiving, and distribution of data), Data processing methods 1Corresponding author.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.