Acknowledgements. I thank colleagues at Berkeley, Cambridge and Durham for stimulating conversations; L. Moustakas for assisting with the use of image analysis software; R. Bouwens for providing code to manipulate stellar populations models; and D. Hogg for providing data in tabular form. This work has been supported by NASA grants.
The optical gap between dangling-bond states has been measured on a single-domain diamond C(111)-2 × 1 surface. The experimental result is 1.47 eV. Such a large surface gap (even larger if excitonic effects are considered) so far has not been obtained by state-of-the-art band calculations and its physical origin is still not elucidated. The experimental result suggests a strong electron-phonon interaction in this surface. The renormalization of the bare electronic transition energy by electron-phonon interaction provides a clue to solve the apparent disagreement between theory and experiment.
The structural and electronic properties, stability, optimum coverage and workfunction of oxygen atoms at different sites on the (1×1) unreconstructed and the (2×1) reconstructed C(111) surfaces have been investigated using density functional theory. Oxygen atoms prefer on-top sites on the C(111)-(1×1) surface, with an optimum coverage of 1/3 monolayers (ML), while on the (2×1) reconstructed surface, bridge sites are preferred with a coverage of 1/2 ML. With increasing oxygen coverage greater than 1/3 ML on the (1×1) surface, a repulsive interaction develops between the oxygen atoms, while for the (2×1) surface such a repulsive interaction occurs for coverages greater than 0.5 ML. For both surfaces, the workfunction initially increases with oxygen adsorption relative to that of each of the clean surfaces, reaching about ∼6 eV and then decreasing slightly at full monolayer coverage. Minimal buckling of the upper π-bonded chains and no dimerization of the clean (2×1) reconstructed surface was observed. An average valence band width of ∼21 eV occurs, and a surface state associated with the (2×1) surface reconstruction was established at ∼-2.5 eV. In addition, O 2s states were established at around -21 eV for the (1×1) surface and at ∼-22.5 eV on the (2×1) surface. These corresponded to similarly located C 2s states at -21.25 eV for both (1×1) and (2×1) surfaces. O 2p states were observed at the Fermi level, ∼-1.25, -2.5, -4.0, and ∼-7.5 eV on the (1×1) surface, and at ∼-2.5 eV, between -4 and -5 eV and at ∼-7.5 eV on the (2×1) surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.