A stochastic magnetic boundary, produced by an applied edge resonant magnetic perturbation, is used to suppress most large edge-localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H mode transport barrier and core confinement are unaffected by the stochastic boundary, despite a threefold drop in the toroidal rotation. These results demonstrate that stochastic boundaries are compatible with H modes and may be attractive for ELM control in next-step fusion tokamaks.
A critical issue for fusion plasma research is the erosion of the first wall of the experimental device due to impulsive heating from repetitive edge magneto-hydrodynamic (MHD) instabilities known as "edge-localized modes" (ELMs). Here, we show that the addition of small resonant magnetic field perturbations completely eliminates ELMs while maintaining a steady-state highconfinement (H-mode) plasma. These perturbations induce a chaotic behaviour in the magnetic field lines, which reduces the edge pressure gradient below the ELM instability threshold. The pressure gradient reduction results from a reduction in particle content of the plasma, rather than an increase in the electron thermal transport. This is inconsistent with the predictions of stochastic electron heat transport theory. These results provide a first experimental test of stochastic transport theory in a highly rotating, hot, collisionless plasma and demonstrate a promising solution to the critical issue of controlling edge instabilities in fusion plasma devices. Nature Physics. 3Maximizing the fusion power production in toroidally symmetric magnetic confinement devices (tokamaks 1,2 ) requires high-confinement (H-mode) plasma conditions that have high edge plasma pressures. A ubiquitous feature of these high edge pressure, steady state, H-mode tokamak plasmas is repetitive instabilities known as "edge-localized modes" (ELMs) which release a significant fraction of the thermal energy of the plasma to the first wall of the device.These instabilities are a class of ideal magneto-hydrodynamic (MHD) modes produced in a high pressure gradient region at the plasma edge (called the "pedestal") where pressure gradient driven "ballooning" modes can couple to current density driven "peeling" modes 3 . While ELMs provide a natural transport process that controls the core plasma density and edge impurity ion penetration, they also represent a significant concern for burning plasma devices such as the ! n e ped ) to achieve significant fusion power gain factors, Q ≥ 10, they must operate below ! " e * = 0.1. In this case each ELM is expected to expel up to 20% of the pedestal energy over a time interval of a few hundred µs. If allowed to reach plasma-facing wall components, energy impulses of this magnitude will cause increased erosion of plasma facing components and significantly reduce their lifetime 5,6 . Thus, controlling ELMs by replacing the energy impulses with an equivalent but more continuous transport process is a high priority issue for tokamak fusion research.A particularly appealing ELM control approach in low the RMP field causes a larger change in the edge particle balance (i.e., changes in the balance between outward particle transport and edge particle sources and sinks) rather than in the thermal transport across the pedestal is both surprising and theoretically challenging.As in previous high is satisfied, these small ELMs disappear, leaving the plasma in a very quiet state (Fig. 3a), and the pedestal density ! n e ped begins to fall w...
Large Type-I Edge Localized Modes (ELMs) are completely eliminated with small n = 3 resonant magnetic perturbations (RMP) in low average triangularity, " = 0.26, plasmas and in ITER Similar Shaped (ISS) plasmas, " = 0.53, with ITER relevant collisionalities v e " # 0.2. Significant differences in the RMP requirements and in the properties of the ELM suppressed plasmas are found when comparing the two triangularities. In ISS plasmas, the current required to suppress ELMs is approximately 25% higher than in low average triangularity plasmas. It is also found that the width of the resonant q 95 window required for ELM suppression is smaller in ISS plasmas than in low average triangularity plasmas. An analysis of the positions and widths of resonant magnetic islands across the pedestal region, in the absence of resonant field screening or a self-consistent plasma response, indicates that differences in the shape of the q profile may explain the need for higher RMP coil currents during ELM suppression in ISS plasmas. Changes in the pedestal profiles are compared for each plasma shape as well as with changes in the injected neutral beam power and the RMP amplitude. Implications of these results are discussed in terms of requirements for optimal ELM control coil designs and for establishing the physics basis needed in order to scale this approach to future burning plasma devices such as ITER.
Progress in the definition of the requirements for edge localized mode (ELM) control and the application of ELM control methods both for high fusion performance DT operation and non-active low-current operation in ITER is described. Evaluation of the power fluxes for low plasma current H-modes in ITER shows that uncontrolled ELMs will not lead to damage to the tungsten (W) divertor target, unlike for high-current H-modes in which divertor damage by uncontrolled ELMs is expected. Despite the lack of divertor damage at lower currents, ELM control is found to be required in ITER under these conditions to prevent an excessive contamination of the plasma by W, which could eventually lead to an increased disruptivity. Modelling with the non-linear MHD code JOREK of the physics processes determining the flow of energy from the confined plasma onto the plasma-facing components during ELMs at the ITER scale shows that the relative contribution of conductive and convective losses is intrinsically linked to the magnitude of the ELM energy loss. Modelling of the triggering of ELMs by pellet injection for DIII-D and ITER has identified the minimum pellet size required to trigger ELMs and, from this, the required fuel throughput for the application of this technique to ITER is evaluated and shown to be compatible with the installed fuelling and tritium re-processing capabilities in ITER. The evaluation of the capabilities of the ELM control coil system in ITER for ELM suppression is carried out (in the vacuum approximation) and found to have a factor of ∼2 margin in terms of coil current to achieve its design criterion, although such a margin could be substantially reduced when plasma shielding effects are taken into account. The consequences for the spatial distribution of the power fluxes at the divertor of ELM control by three-dimensional (3D) fields are evaluated and found to lead to substantial toroidal asymmetries in zones of the divertor target away from the separatrix. Therefore, specifications for the rotation of the 3D perturbation applied for ELM control in order to avoid excessive localized erosion of the ITER divertor target are derived. It is shown that a rotation frequency in excess of 1 Hz for the whole toroidally asymmetric divertor power flux pattern is required (corresponding to n Hz frequency in the variation of currents in the coils, where n is the toroidal symmetry of the perturbation applied) in order to avoid unacceptable thermal cycling of the divertor target for the highest power fluxes and worst toroidal power flux asymmetries expected. The possible use of the in-vessel vertical stability coils for ELM control as a back-up to the main ELM control systems in ITER is described and the feasibility of its application to control ELMs in low plasma current H-modes, foreseen for initial ITER operation, is evaluated and found to be viable for plasma currents up to 5-10 MA depending on modelling assumptions.
Intermittent plasma objects ͑IPOs͒ featuring higher pressure than the surrounding plasma, and responsible for ϳ50% of the EϫB T radial transport, are observed in the scrape off layer ͑SOL͒ and edge of the DIII-D tokamak ͓J. Watkins et al., Rev. Sci. Instrum. 63, 4728 ͑1992͔͒. Conditional averaging reveals that the IPOs, produced at a rate of ϳ3ϫ10 3 s Ϫ1 , are positively charged and also polarized, featuring poloidal electric fields of up to 4000 V/m. The IPOs move poloidally at speeds of up to 5000 m/s and radially with EϫB T /B 2 velocities of ϳ2600 m/s near the last closed flux surface ͑LCFS͒, and ϳ330 m/s near the wall. The IPOs slow down as they shrink in radial size from 4 cm at the LCFS to 0.5 cm near the wall. The IPOs appear in the SOL of both L and H mode discharges and are responsible for nearly 50% of the SOL radial EϫB transport at all radii; however, they are highly reduced in absolute amplitude in H-mode conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.