Carbon sequestration and storage in peatlands rely on consistently high water tables. Anthropogenic pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of peat-forming vegetation and exposure of previously anaerobic peat to aerobic decomposition. This can shift peatlands from net CO 2 sinks to large CO 2 sources, releasing carbon held for millennia. Peatlands also export significant quantities of carbon via fluvial pathways, mainly as dissolved organic carbon (DOC). We analyzed radiocarbon ( 14 C) levels of DOC in drainage water from multiple peatlands in Europe and Southeast Asia, to infer differences in the age of carbon lost from intact and drained systems. In most cases, drainage led to increased release of older carbon from the peat profile but with marked differences related to peat type. Very low DOC-14 C levels in runoff from drained tropical peatlands indicate loss of very old (centuries to millennia) stored peat carbon. High-latitude peatlands appear more resilient to drainage; 14 C measurements from UK blanket bogs suggest that exported DOC remains young (<50 years) despite drainage. Boreal and temperate fens and raised bogs in Finland and the Czech Republic showed intermediate sensitivity. We attribute observed differences to physical and climatic differences between peatlands, in particular, hydraulic conductivity and temperature, as well as the extent of disturbance associated with drainage, notably land use changes in the tropics. Data from the UK Peak District, an area where air pollution and intensive land management have triggered Sphagnum loss and peat erosion, suggest that additional anthropogenic pressures may trigger fluvial loss of much older (>500 year) carbon in high-latitude systems. Rewetting at least partially offsets drainage effects on DOC age.
ABSTRACT:We assessed the vulnerability of blanket peat to climate change in Great Britain using an ensemble of 8 bioclimatic envelope models. We used 4 published models that ranged from simple threshold models, based on total annual precipitation, to Generalised Linear Models (GLMs, based on mean annual temperature). In addition, 4 new models were developed which included measures of water deficit as threshold, classification tree, GLM and generalised additive models (GAM). Models that included measures of both hydrological conditions and maximum temperature provided a better fit to the mapped peat area than models based on hydrological variables alone. Under UKCIP02 projections for high (A1F1) and low (B1) greenhouse gas emission scenarios, 7 out of the 8 models showed a decline in the bioclimatic space associated with blanket peat. Eastern regions (Northumbria, North York Moors, Orkney) were shown to be more vulnerable than higher-altitude, western areas (Highlands, Western Isles and Argyle, Bute and The Trossachs). These results suggest a long-term decline in the distribution of actively growing blanket peat, especially under the high emissions scenario, although it is emphasised that existing peatlands may well persist for decades under a changing climate. Observational data from long-term monitoring and manipulation experiments in combination with process-based models are required to explore the nature and magnitude of climate change impacts on these vulnerable areas more fully.
Abstract:Upper North Grain (UNG) is a heavily eroding blanket peat catchment in the Peak District, southern Pennines, UK. Concentrations of lead in the near-surface peat layer at UNG are in excess of 1000 mg kg 1 . For peatland environments, these lead concentrations are some of the highest globally. High concentrations of industrially derived, atmospherically transported magnetic spherules are also stored in the near-surface peat layer. Samples of suspended sediment taken during a storm event that occurred on 1 November 2002 at UNG, and of the potential catchment sources for suspended sediments, were analysed for lead content and the environmental magnetic properties of anhysteretic remanent magnetization (ARM) and saturation isothermal remanent magnetization (SIRM). At the beginning of the storm event, there is a peak in both suspended sediment and associated lead concentration. SIRM/ARM values for suspended sediment samples throughout the storm reveal that the initial 'lead flush' is associated with a specific sediment source, namely that of organic sediment eroded from the upper peat layer. Using the magnetic 'fingerprinting' approach to discrimination of sediment sources, this study reveals that erosion of the upper peat layer at UNG is releasing high concentrations of industrially derived lead (and, by inference, other toxic heavy metals associated with industrial particulates) into the fluvial systems of the southern Pennines. Climate-change scenarios for the UK, involving higher summer temperatures and stormier winters, may result in an increased flux both of sediment-associated and dissolved heavy metals from eroding peatland catchments in the southern Pennines, adversely affecting the quality of sediment and water entering reservoirs of the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.