The O, N, and C 1s core level photoemission spectra of the nucleobases cytosine and uracil have been measured in the vapor phase, and the results have been interpreted via theoretical calculations. Our calculations accurately predict the relative binding energies of the core level features observed in the experimental photoemission results and provide a full assignment. In agreement with previous work, a single tautomer of uracil is populated at 405 K, giving rise to relatively simple spectra. At 450 K, three tautomers of cytosine, one of which may consist of two rotamers, are identified, and their populations are determined. This resolves inconsistencies between recent laser studies of this molecule in which the rare imino-oxo tautomer was not observed and older microwave spectra in which it was reported.
The core level photoemission and near edge X-ray photoabsorption spectra of guanine in the gas phase have been measured and the results interpreted with the aid of high level ab initio calculations. Tautomers are clearly identified spectroscopically, and their relative free energies and Boltzmann populations at the temperature of the experiment (600 K) have been calculated and compared with the experimental results and with previous calculations. We obtain good agreement between experiment and the Boltzmann weighted theoretical photoemission spectra, which allows a quantitative determination of the ratio of oxo to hydroxy tautomer populations. For the photoabsorption spectra, good agreement is found for the C 1s and O 1s spectra but only fair agreement for the N 1s edge.
Core-level X-ray photoemission and near-edge X-ray absorption fine structure spectra of 5-methylcytosine, 5-fluorocytosine, and isocytosine are presented and discussed with the aid of high-level ab initio calculations. The effects of the methylation, halogenation, and isomerization on the relative stabilities of cytosine tautomers are clearly identified spectroscopically. The hydroxy-oxo tautomeric forms of these molecules have been identified, and their quantitative populations at the experimental temperature are calculated and compared with the experimental results and with previous calculations. The calculated values of Gibbs free energy and Boltzmann population ratios are in good agreement with the experimental results characterizing tautomer equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.