Abstract-This paper proposes a double negative metamaterial surface as a superstrate for a multilayer cylindrical dielectric resonator antenna (MCDRA). The aim is to achieve a broadband and high gain Electromagnetic Band Gap (EBG) antenna that can be used in harsh propagation areas to satisfy all the requirements for the 60 GHz wireless communications offering a bandwidth of 7 GHz in the unlicensed ISM band (57-65 GHz), permitting to reach data rates of 10 Gbit/s and more. To meet these objectives various techniques are combined. Numerical and experimental results showed satisfactory performances with achievable impedance bandwidth of more than 10.5% (from 58.1 to 64.2 GHz) and a 18 dBi gain, an enhancement of 13 dBi compared to a homogenous DRA without metamaterial superstrate. The proposed antenna exhibits directive and stable radiation pattern in the entire operating band.
This paper presents the design of a high gain cross DRA array antenna (AXDRA) with a novel feeding method based on microstrip transmission line for millimeter-wave operation. Simulation results shows that the AXDRA achieves an impedance bandwidth from 57.5 GHz to 63 GHz covering ISM band, and gives an appreciable gain of 15.5 dBi, found to be stable within the passband. The size of the whole antenna structure is about 25mm×25mm and is therefore small enough to be used in underground communications systems. The simulation process was done using Computer Simulation Technology (CST) Microwave Studio.
Abstract-This article focuses on the development of a high gain, broadband, circularly polarized Electromagnetic Band Gap (EBG) antenna operating at 60 GHz. The designed antenna is configured with a superstrate based on a frequency selective surface (FSS) placed in front of a cross dielectric resonator antenna (XDRA), installed into a ground plane, which acts as an excitation source. A fast Leaky-Wave approach based on transverse equivalent network (TEN) is used to deduce analytical radiation patterns formulas of the proposed antenna. The proposed analytical model was implemented and verified by a comparison with both numerical and experimental results. The reported results showed very satisfactory performances with an achievable impedance bandwidth (S 11 < −10 dB) of 11.7% from 56 to 63 GHz, an axial-ratio bandwidth (AR < 3 dB) of 5.4% from 58.9 to 62.1 GHz and a stable gain of 16.7 dBi within the passband. A good agreement among analytical, numerical and measured results is successfully achieved and falls well within initially set specifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.