We aimed to validate bioelectrical impedance spectroscopy (BIS), compared with tracer dilution measurements, for assessing total body water (TBW), intracellular water (ICW), and extracellular water (ECW) in athletes differing in hydration status. A total of 201 athletes participated. Reference TBW and ECW were determined by deuterium and bromide dilution methods, respectively; ICW was calculated as TBW‐ECW. Water compartments were estimated by BIS. Urine specific gravity (USG) classified athletes into well‐hydrated (WH) (USG < 1.023), euhydrated (EH) (USG:1.024–1.026), and dehydrated (DH) (USG>1.027). No significant differences were found between BIS and the reference methods for WH, EH, and DH athletes for TBW, ICW nor ECW (p>0.05). Concordance of TBW and its compartments by method was significant (p < 0.001) with coefficients of determination ranging by hydration classification [EH:52–96%;DH:56–98%;WH:71–96%]. Bland‐Altman analyses showed no trend for TBW and its compartments with the exception of ICW in the WH athletes. The 95% confidence BIS intervals for the WH group ranged from −3.08 to 2.68 kg for TBW, −4.28 to 4.14 kg for ICW, and −3.29 to 3.02 kg for ECW. For the EH athletes, the 95% confidence intervals ranged from −2.78 to 2.24 kg for TBW, −4.10 to 3.94 kg for ICW, and −3.44 to 3.06 kg for ECW. In DH group, TBW ranged between −1.99 and 2.01 kg, ICW between −3.78 and 6.34 kg, and ECW between −6.22 and 3.74 kg. These findings show that BIS is useful at a group level in assessing water compartments in athletes differing in hydration status. However, the usefulness of BIS is limited at an individual level, especially in dehydrated athletes.
GRAVITY+ is the upgrade for GRAVITY and the Very Large Telescope Interferometer (VLTI) with wide-separation fringe tracking, new adaptive optics, and laser guide stars on all four 8 m Unit Telescopes (UTs) to enable ever-fainter, all-sky, high-contrast, milliarcsecond interferometry. Here we present the design and first results of the first phase of GRAVITY+, known as GRAVITY Wide. GRAVITY Wide combines the dual-beam capabilities of the VLTI and the GRAVITY instrument to increase the maximum separation between the science target and the reference star from 2 arcseconds with the 8 m UTs up to several 10 arcseconds, limited only by the Earth's turbulent atmosphere. This increases the sky-coverage of GRAVITY by two orders of magnitude, opening up milliarcsecond resolution observations of faint objects and, in particular, the extragalactic sky. The first observations in 2019 -2022 include the first infrared interferometry of two redshift z ∼ 2 quasars, interferometric imaging of the binary system HD 105913A, and repeat observations of multiple star systems in the Orion Trapezium Cluster. We find the coherence loss between the science object and fringe-tracking reference star well described by the turbulence of the Earth's atmosphere. We confirm that the larger apertures of the UTs result in higher visibilities for a given separation due to the broader overlap of the projected pupils on the sky and provide predictions for visibility loss as a function of separation to be used for future planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.