Summary• The extent of isotopic discrimination of transition metals in biological processes is poorly understood but potentially has important applications in plant and biogeochemical studies.• Using multicollector inductively coupled plasma (ICP) mass spectrometry, we measured isotopic fractionation of zinc (Zn) during uptake from nutrient solutions by rice ( Oryza sativa ), lettuce ( Lactuca sativa ) and tomato ( Lycopersicon esculentum ) plants.• For all three species, the roots showed a similar extent of heavy Zn enrichment relative to the nutrient solution, probably reflecting preferential adsorption on external root surfaces. By contrast, a plant-species specific enrichment of the light Zn isotope occurred in the shoots, indicative of a biological, membrane-transport controlled uptake into plant cells. The extent of the fractionation in the shoots further depended on the Zn speciation in the nutrient solution.• The observed isotopic depletion in heavy Zn from root to shoot ( − 0.13 to − 0.26‰ per atomic mass unit) is equivalent to roughly a quarter of the total reported terrestrial variability of Zn isotopic compositions ( c. 0.84‰ per atomic mass unit). Plant uptake therefore represents an important source of isotopic variation in biogeochemical cycling of Zn.
Recent reports suggest that significant fractionation of stable metal isotopes occurs during biogeochemical cycling and that the uptake into higher plants is an important process. To test isotopic fractionation of copper (Cu) and zinc (Zn) during plant uptake and constrain its controls, we grew lettuce, tomato, rice and durum wheat under controlled conditions in nutrient solutions with variable metal speciation and iron (Fe) supply. The results show that the fractionation patterns of these two micronutrients are decoupled during the transport from nutrient solution to root. In roots, we found an enrichment of the heavier isotopes for Zn, in agreement with previous studies, but an enrichment of isotopically light Cu, suggesting a reduction of Cu(II) possibly at the surfaces of the root cell plasma membranes. This observation holds for both graminaceous and nongraminaceaous species and confirms that reduction is a predominant and ubiquitous mechanism for the acquisition of Cu into plants similar to the mechanism for the acquisition of iron (Fe) by the strategy I plant species. We propose two preliminary models of isotope fractionation processes of Cu and Zn in plants with different uptake strategies.
Two approaches to correct for mass discrimination effects associated with Cu and Zn isotopic measurements on two different MC-ICP-MS instruments (a Micromass IsoProbe and a VG Axiom) have been compared and assessed in detail: (1) sample-standard bracketing (SSB), and (2) the 'empirical external normalisation' (EEN) whereby a second element is used to simultaneously correct for mass discrimination. This has provided new insights into the mass discrimination behaviours of Cu and Zn under varying instrumental set-ups, and has allowed improvements to be made to the existing correction procedures. With the SSB approach, mass bias stability is a prerequisite, and matrix components must be removed from the analyte to avoid matrix-related mass discrimination effects. By comparison, the EEN approach requires a degree of mass bias instability, and automatically corrects for matrix-related mass discrimination effects. The EEN correction may therefore appear more robust. However, while the EEN correction yields high-precision 65 Cu/ 63 Cu and 66 Zn/ 64 Zn data, an as yet unidentified source of systematic drift in the 67 Zn and 68 Zn signals through time hinders analyses of ratios incorporating these isotopes. Using the EEN correction where analyte and spike ratios were measured sequentially within a peak-switching protocol led to a three-fold deterioration in precision relative to static measurements. This is consistent with mass bias drift on the scale of a single five-second-measurement integration. For relative 65 Cu/ 63 Cu and 66 Zn/ 64 Zn ratio measurements, the SSB and EEN corrections give long-term reproducibilities of less then ¡0.07% (2SD) for pure Cu and Zn reagents. This is sufficient for resolving mass-dependent isotopic variability in natural and anthropogenic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.