Abstract. We present the first results from simulations of processes leading to planet formation in protoplanetary disks with different metallicities. For a given metallicity, we construct a two-dimensional grid of disk models with different initial masses and radii (M 0 , R 0 ). For each disk, we follow the evolution of gas and solids from an early evolutionary stage, when all solids are in the form of small dust grains, to the stage when most solids have condensed into planetesimals. Then, based on the core accretion -gas capture scenario, we estimate the planet-bearing capability of the environment defined by the final planetesimal swarm and the still evolving gaseous component of the disk. We define the probability of planet-formation, P p , as the normalized fractional area in the (M 0 , log R 0 ) plane populated by disks that have formed planets inside 5 AU. With such a definition, and under the assumption that the population of planets discovered at R < 5 AU is not significantly contaminated by planets that have migrated from R > 5 AU, our results agree fairly well with the observed dependence between the probability that a star harbors a planet and the star's metal content. The agreement holds for the disk viscosity parameter α ranging from 10 −3 to 10 −2 , and it becomes much poorer when the redistribution of solids relative to the gas is not allowed for during the evolution of model disks.
Abstract.We have developed and applied a model designed to track simultaneously the evolution of gas and solids in protoplanetary disks from an early stage, when all solids are in the dust form, to the stage when most solids are in the form of a planetesimal swarm. The model is computationally efficient and allows for a global, comprehensive approach to the evolution of solid particles due to gas-solid coupling, coagulation, sedimentation, and evaporation/condensation. The co-evolution of gas and solids is calculated for 10 7 yr for several evolution regimes and starting from a comprehensive domain of initial conditions. The output of a single evolutionary run is a spatial distribution of mass locked in a planetesimal swarm. Because swarm's mass distribution is related to the architecture of a nascent planetary system, diversity of swarms is taken as a proxy for a diversity of planetary systems. We have found that disks with low values of specific angular momentum are bled out of solids and do not form planetary systems. Disks with high and intermediate values of specific angular momentum form diverse planetary systems. Solar-like planetary systems form from disks with initial masses ≤0.02 M and angular momenta ≤3 × 10 52 g cm 2 s −1 . Planets more massive than Jupiter can form at locations as close as 1 AU from the central star according to our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.