We design and fabricate a novel multicore fiber (MCF), with seven cores arranged in a hexagonal array. The fiber properties of MCF including low crosstalk, attenuation and splice loss are described. A new tapered MCF connector (TMC), showing ultra-low crosstalk and losses, is also designed and fabricated for coupling the individual signals in-and-out of the MCF. We further propose a novel network configuration using parallel transmissions with the MCF and TMC for passive optical network (PON). To the best of our knowledge, we demonstrate the first bi-directional parallel transmissions of 1310 nm and 1490 nm signals over 11.3-km of seven-core MCF with 64-way splitter for PON.
We describe a new multicore fiber (MCF) having seven single-mode cores arranged in a hexagonal array, exhibiting low crosstalk among the cores and low loss across the C and L bands. We experimentally demonstrate a record transmission capacity of 112 Tb/s over a 76.8-km MCF using space-division multiplexing and dense wavelength-division multiplexing (DWDM). Each core carries 160 107-Gb/s polarization-division multiplexed quadrature phase-shift keying (PDM-QPSK) channels on a 50-GHz grid in the C and L bands, resulting in an aggregate spectral efficiency of 14 b/s/Hz. We further investigate the impact of the inter-core crosstalk on a 107-Gb/s PDM-QPSK signal after transmitting through the center core of the MCF when all the 6 outer cores carry same-wavelength 107-Gb/s signals with equal powers, and discuss the system implications of core-to-core crosstalk on ultra-long-haul transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.