Reflection anisotropy spectroscopy (RAS) is a non-destructive optical probe of surfaces that is capable of operation within a wide range of environments. In this review we trace the development of RAS from its origins in the 1980s as a probe of semiconductor surfaces and semiconductor growth through to the present where it is emerging as a powerful addition to the wide range of existing ultra-high vacuum (UHV) surface science techniques. The principles, instrumentation and theoretical considerations of RAS are discussed. The recent progress in the application of RAS to investigate phenomena at metal surfaces is reviewed, and applications in fields including electrochemistry, molecular assembly, liquid crystal device fabrication and remote stress sensing are discussed. We show that the experimental study of relatively simple surfaces combined with continuing progress in the theoretical description of surface optics promises to unlock the full potential of RAS. This provides a firm foundation for the application of the technique to the challenging fields of ambient, high pressure and liquid environments. It is in these environments that RAS has a clear advantage over UHVbased probes for investigating surface phenomena, and its surface sensitivity, ability to monitor macroscopic areas and rapidity of response make it an ideal complement to scanning probe techniques which can also operate in such environments.
It is demonstrated using reflection anisotropy spectroscopy that the adsorption of cytosine and cytidine -monophosphate at the Au(110) 1 x 2/electrolyte interface gives rise to ordered structures in which the base is oriented vertical to the surface and parallel to the [110] axis of the Au(110) plane.
Background:Colorectal cancer is common in England and, with long-term survival relatively poor, improving outcomes is a priority. A major initiative to reduce mortality from the disease has been the introduction of the National Health Service (NHS) Bowel Cancer Screening Programme (BCSP). Combining data from the BCSP with that in the National Cancer Data Repository (NCDR) allows all tumours diagnosed in England to be categorised according to their involvement with the BCSP. This study sought to quantify the characteristics of the tumours diagnosed within and outside the BCSP and investigate its impact on outcomes.Methods:Linkage of the NCDR and BCSP data allowed all tumours diagnosed between July 2006 and December 2008 to be categorised into four groups; screen-detected tumours, screening-interval tumours, tumours diagnosed in non-participating invitees and tumours diagnosed in those never invited to participate. The characteristics, management and outcome of tumours in each category were compared.Results:In all, 76 943 individuals were diagnosed with their first primary colorectal cancer during the study period. Of these 2213 (2.9%) were screen-detected, 623 (0.8%) were screening-interval cancers, 1760 (2.3%) were diagnosed in individuals in non-participating invitees and 72 437 (94.1%) were diagnosed in individuals not invited to participate in the programme due to its ongoing roll-out over the time period studied. Screen-detected tumours were identified at earlier Dukes' stages, were more likely to be managed with curative intent and had significantly better outcomes than tumours in other categories.Conclusion:Screen-detected cancers had a significantly better prognosis than other tumours and this would suggest that the BCSP should reduce mortality from colorectal cancer in England.
The conditions necessary for the formation of a monolayer and a bilayer of a mutated form (P499C) of human cytochrome P450 reductase on a Au(110)/electrolyte interface have been determined using a quartz crystal microbalance with dissipation, atomic force microscopy, and reflection anisotropy spectroscopy (RAS). The molecules adsorb through a Au-S linkage and, for the monolayer, adopt an ordered structure on the Au(110) substrate in which the optical axes of the dipoles contributing to the RAS signal are aligned roughly along the optical axes of the Au(110) substrate. Differences between the absorption spectrum of the molecules in a solution and the RAS profile of the adsorbed monolayer are attributed to surface order in the orientation of dipoles that contribute in the low energy region of the spectrum, a roughly vertical orientation on the surface of the long axes of the isoalloxazine rings and the lack of any preferred orientation in the molecular structure of the dipoles in the aromatic amino acids. Our studies establish an important proof of principle for immobilizing large biological macromolecules to gold surfaces. This opens up detailed studies of the dynamics of biological macromolecules by RAS, which have general applications in studies of biological redox chemistry that are coupled to protein dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.